×

zbMATH — the first resource for mathematics

Sharp and meager elements in orthocomplete homogeneous effect algebras. (English) Zbl 1193.03084
According to [G. Jenča, Bull. Aust. Math. Soc. 64, No. 1, 81–98 (2001; Zbl 0985.03063)], a homogeneous effect algebra is one in which \(u \leq v_1 \oplus v_2 \leq u'\) implies that \(u = u_1 \oplus u_2\) for some \(u_1 \leq v_1\) and \(u_2 \leq v_2\). An element \(x\) of an effect algebra \(E\) is said to be sharp if \(x \wedge x'= 0\), and meager if \(0\) is the single sharp element below \(x\). If \(E\) is lattice-ordered and complete, then the set \(S(E)\) of all its sharp elements is known to be a complete sublattice. The author shows that if \(E\) is orthocomplete and homogeneous, then the subset \(M(E)\) of its meager elements forms a commutative BCK-algebra with the relative cancellation property.
The main result of the paper states that a complete lattice effect algebra \(E\) is, up to isomorphism, characterised by the triple \((S(E), M(E), h)\), where \(h\) is the mapping that associates the lower end \(\{x \in M(E): x \leq a\}\) of \(M(E)\) to every \(a \in S(E)\). The proof depends on the fact that \(E\) is actually orthocomplete and homogeneous. An explicit construction of a copy of \(E\), resemblig the triple construction of Stone algebras, is presented. The inverse problem – which triples consisting of a lattice effect algebra \(S\), BCK-algebra \(M\) and an appropriate function \(h\) arise from a complete lattice effect algebra – is not addressed in the paper.

MSC:
03G12 Quantum logic
06C15 Complemented lattices, orthocomplemented lattices and posets
06F35 BCK-algebras, BCI-algebras
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bennett, M.K., Foulis, D.J.: Interval and scale effect algebras. Adv. Appl. Math. 19, 200–215 (1997) · Zbl 0883.03048
[2] Cattaneo, G.: A unified framework for the algebra of unsharp quantum mechanics. Int. J. Theor. Phys. 36, 3085–3117 (1997) · Zbl 0898.03022
[3] Chang, C.C.: Algebraic analysis of many-valued logics. Trans. Am. Math. Soc. 88, 467–490 (1959) · Zbl 0084.00704
[4] Chen, C.C., Grätzer, G.: Stone lattices I. Construction theorems. Can. J. Math. 21, 884–894 (1969) · Zbl 0184.03303
[5] Chen, C.C., Grätzer, G.: Stone lattices II. Structure theorems. Can. J. Math. 21, 895–903 (1969) · Zbl 0184.03304
[6] Chevalier, G., Pulmannová, S.: Some ideal lattices in partial abelian monoids. Order 17, 75–92 (2000) · Zbl 0960.03053
[7] Chovanec, F., Kôpka, F.: Boolean D-posets. Tatra Mt. Math. Publ. 10, 183–197 (1997) · Zbl 0915.03052
[8] Dvurečenskij, A.: Effect algebras which can be covered by MV-algebras. Int. J. Theor. Phys. 41, 221–229 (2002) · Zbl 1022.06005
[9] Dvurečenskij, A., Graziano, M.G.: Remarks on representations of minimal clans. Tatra Mt. Math. Publ. 15, 31–53 (1998) · Zbl 0939.06017
[10] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer and Ister Science, Dordrecht (2000)
[11] Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 24, 1325–1346 (1994) · Zbl 1213.06004
[12] Foulis, D.J., Greechie, R., Rütimann, G.: Filters and supports in orthoalgebras. Int. J. Theor. Phys. 35, 789–802 (1995) · Zbl 0764.03026
[13] Giuntini, R., Greuling, H.: Toward a formal language for unsharp properties. Found. Phys. 19, 931–945 (1989)
[14] Greechie, R., Foulis, D., Pulmannová, S.: The center of an effect algebra. Order 12, 91–106 (1995) · Zbl 0846.03031
[15] Gudder, S.: Sharply dominating effect algebras. Tatra Mt. Math. Publ. 15, 23–30 (1998) · Zbl 0939.03073
[16] Jenča, G.: Subcentral ideals in generalized effect algebras. Int. J. Theor. Phys. 39, 745–755 (2000) · Zbl 0957.03060
[17] Jenča, G.: Blocks of homogeneous effect algebras. Bull. Aust. Math. Soc. 64, 81–98 (2001) · Zbl 0985.03063
[18] Jenča, G.: Finite homogeneous and lattice ordered effect algebras. Discrete Math. 272, 197–214 (2003) · Zbl 1031.03078
[19] Jenča, G., Pulmannová, S.: Quotients of partial abelian monoids and the Riesz decomposition property. Algebra Univers. 47, 443–477 (2002) · Zbl 1063.06011
[20] Jenča, G., Pulmannová, S.: Orthocomplete effect algebras. Proc. Am. Math. Soc. 131, 2663–2671 (2003) · Zbl 1019.03046
[21] Jenča, G., Riečanová, Z.: On sharp elements in lattice ordered effect algebras. BUSEFAL 80, 24–29 (1999)
[22] Kôpka, F., Chovanec, F.: D-posets. Math. Slovaca 44, 21–34 (1994)
[23] Mundici, D.: Interpretation of AF C *-algebras in Lukasziewicz sentential calculus. J. Funct. Anal. 65, 15–53 (1986) · Zbl 0597.46059
[24] Mundici, D.: MV-algebras are categorically equivalent to bounded commutative BCK-algebras. Math. Jpn. 6, 889–894 (1986) · Zbl 0633.03066
[25] Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht (1991) · Zbl 0743.03039
[26] Riečanová, Z.: A generalization of blocks for d-lattices and lattice effect algebras. Int. J. Theor. Phys. 39, 231–237 (2000) · Zbl 0968.81003
[27] Riečanová, Z.: Continuous lattice effect algebras admitting order continuous states. Fuzzy Sets Syst. 136, 41–54 (2003) · Zbl 1022.03047
[28] Yutani, H.: The class of commutative BCK-algebras is equationally definable. Math. Semin. Notes 5, 207–210 (1977) · Zbl 0373.02045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.