zbMATH — the first resource for mathematics

Reduction schemes for one-loop tensor integrals. (English) Zbl 1192.81158
Summary: We present new methods for the evaluation of one-loop tensor integrals which have been used in the calculation of the complete electroweak one-loop corrections to \(e^{+}e^{ - }\rightarrow 4\) fermions. The described methods for 3-point and 4-point integrals are, in particular, applicable in the case where the conventional Passarino–Veltman reduction breaks down owing to the appearance of Gram determinants in the denominator. One method consists of different variants for expanding tensor coefficients about limits of vanishing Gram determinants or other kinematical determinants, thereby reducing all tensor coefficients to the usual scalar integrals. In a second method a specific tensor coefficient with a logarithmic integrand is evaluated numerically, and the remaining coefficients as well as the standard scalar integral are algebraically derived from this coefficient. For 5-point tensor integrals, we give explicit formulas that reduce the corresponding tensor coefficients to coefficients of 4-point integrals with tensor rank reduced by one. Similar formulas are provided for 6-point functions, and the generalization to functions with more internal propagators is straightforward. All the presented methods are also applicable if infrared (soft or collinear) divergences are treated in dimensional regularization or if mass parameters (for unstable particles) become complex.

81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
Full Text: DOI
[1] ’t Hooft, G.; Veltman, M.J., Nucl. phys. B, 153, 365, (1979)
[2] Beenakker, W.; Denner, A.; Denner, A.; Nierste, U.; Scharf, R., Nucl. phys. B, Nucl. phys. B, 367, 637, (1991)
[3] Brown, L.M.; Feynman, R.P., Phys. rev., 85, 231, (1952)
[4] Passarino, G.; Veltman, M.J., Nucl. phys. B, 160, 151, (1979)
[5] van Oldenborgh, G.J.; Vermaseren, J.A., Z. phys. C, 46, 425, (1990)
[6] Ezawa, Y., Comput. phys. commun., 69, 15, (1992)
[7] Bélanger, G.
[8] Stuart, R.G.; Stuart, R.G.; Gongora, A., Comput. phys. commun., Comput. phys. commun., 56, 337, (1990)
[9] Devaraj, G.; Stuart, R.G., Nucl. phys. B, 519, 483, (1998)
[10] Boudjema, F.; Semenov, A.; Temes, D., Phys. rev. D, 72, 055024, (2005)
[11] Campbell, J.M.; Glover, E.W.; Miller, D.J., Nucl. phys. B, 498, 397, (1997)
[12] Davydychev, A.I., Phys. lett. B, 263, 107, (1991)
[13] Tarasov, O.V.; Fleischer, J.; Jegerlehner, F.; Tarasov, O.V., Phys. rev. D, Nucl. phys. B, 566, 423, (2000)
[14] Bern, Z.; Dixon, L.J.; Kosower, D.A.; Bern, Z.; Dixon, L.J.; Kosower, D.A.; Bern, Z.; Dixon, L.J.; Kosower, D.A., Phys. lett. B, Phys. lett. B, Nucl. phys. B, 412, 751, (1994), Erratum
[15] Binoth, T.; Guillet, J.P.; Heinrich, G., Nucl. phys. B, 572, 361, (2000)
[16] Duplančić, G.; Nižić, B., Eur. phys. J. C, 35, 105, (2004)
[17] Giele, W.T.; Glover, E.W.N., Jhep, 0404, 029, (2004)
[18] Giele, W.; Glover, E.W.N.; Zanderighi, G.; Ellis, R.K.; Giele, W.T.; Zanderighi, G., Nucl. phys. B (proc. suppl.), 135, 275, (2004)
[19] Binoth, T.; Guillet, J.P.; Heinrich, G.; Pilon, E.; Schubert, C., Jhep, 0510, 015, (2005)
[20] del Aguila, F.; Pittau, R., Jhep, 0407, 017, (2004)
[21] van Hameren, A.; Vollinga, J.; Weinzierl, S., Eur. phys. J. C, 41, 361, (2005)
[22] Melrose, D.B., Nuovo cimento A, 40, 181, (1965)
[23] van Neerven, W.L.; Vermaseren, J.A., Phys. lett. B, 137, 241, (1984)
[24] Denner, A., Fortschr. phys., 41, 307, (1993)
[25] Suzuki, A.T.; Santos, E.S.; Schmidt, A.G.; Tramontano, F., Phys. rev. D, 67, 114005, (2003)
[26] Denner, A.; Dittmaier, S., Nucl. phys. B, 658, 175, (2003)
[27] Bélanger, G.; Belanger, G., Phys. lett. B, Phys. lett. B, 576, 152, (2003)
[28] Beenakker, W., Nucl. phys. B, 653, 151, (2003)
[29] Dittmaier, S., Nucl. phys. B, 675, 447, (2003)
[30] Ferroglia, A.; Passera, M.; Passarino, G.; Uccirati, S., Nucl. phys. B, 650, 162, (2003)
[31] Kurihara, Y.; Kaneko, T.
[32] Nagy, Z.; Soper, D.E., Jhep, 0309, 055, (2003)
[33] Binoth, T.; Heinrich, G.; Kauer, N., Nucl. phys. B, 654, 277, (2003)
[34] de Doncker, E.; de Doncker, E.; Shimizu, Y.; Fujimoto, J.; Yuasa, F., Nucl. instrum. methods A, Comput. phys. commun., 159, 145, (2004)
[35] Denner, A.; Dittmaier, S.; Roth, M.; Wieders, L.H.; Denner, A.; Dittmaier, S.; Roth, M.; Wieders, L.H., Phys. lett. B, Nucl. phys. B, 724, 247, (2005)
[36] Y. Yasui, talk given at the ECFA Workshop: Physics and Detectors for a Linear Collider, Durham, September, 2004; K. Kato, talk given at the International Linear Collider Workshop (LCWS05), Stanford, March, 2005
[37] Boudjema, F., Nucl. phys. B (proc. suppl.), 135, 323, (2004)
[38] Eden, R.J.; Landshoff, P.V.; Olive, D.I.; Polkinghorne, J.C., The analytic S matrix, (1966), Cambridge Univ. Press Cambridge · Zbl 0139.46204
[39] TOMS algorithm 698 · Zbl 0900.65053
[40] Hahn, T., Comput. phys. commun., 168, 78, (2005)
[41] Kinoshita, T., J. math. phys., 3, 650, (1962)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.