×

zbMATH — the first resource for mathematics

A combination theorem for strong relative hyperbolicity. (English) Zbl 1192.20027
From the introduction: We prove a combination theorem for trees of (strongly) relatively hyperbolic spaces and finite graphs of (strongly) relatively hyperbolic groups. This gives a geometric extension of Bestvina and Feighn’s Combination Theorem for hyperbolic groups and answers a question of Swarup. We also prove a converse to the main Combination Theorem.
In [J. Differ. Geom. 35, No. 1, 85-102 (1992; Zbl 0724.57029)], M. Bestvina and M. Feighn proved a combination theorem for hyperbolic groups. Motivated by this, Swarup asked the analogous question [in Geometric group theory problem list, available at http://math.utah.edu/~bestvina], for relatively hyperbolic groups. F. Dahmani [Geom. Topol. 7, 933-963 (2003; Zbl 1037.20042)] and E. Alibegović [Bull. Lond. Math. Soc. 37, No. 3, 459-466 (2005; Zbl 1074.57001)] have proven combination theorems motivated by applications to convergence groups and limit groups.
In this paper, we prove a geometric combination theorem (as opposed to a dynamical one) for trees of (strong) relatively hyperbolic metric spaces. We use Bestvina and Feighn’s Combination Theorem [op. cit.] directly in deducing the relevant combination theorem. The conditions we impose are quite different from those of Dahmani [op. cit.] and Alibegović [op. cit.]. Our main Theorems 4.5 and 4.7 are stated below:
Strong Combination Theorem and converse: Theorem 4.5 and Theorem 4.7: Let \(X\) be a tree \((T)\) of strongly relatively hyperbolic spaces satisfying: (1) the q(uasi)-i(sometrically)-embedded condition, (2) the strictly type-preserving condition, (3) the qi-preserving electrocution condition, (4) the induced tree of coned-off spaces satisfies the hallways flare condition, (5) the cone-bounded hallways strictly flare condition. Then \(X\) is strongly hyperbolic relative to the family \(\mathcal C\) of maximal cone-subtrees of horosphere-like spaces.
Conversely, if \(X\) is a tree \((T)\) of strongly relatively hyperbolic spaces satisfying conditions (1)-(3) such that \(X\) is strongly hyperbolic relative to the family \(\mathcal C\) of maximal cone-subtrees of horosphere-like spaces, then the tree of spaces satisfies conditions (4)-(5).
Reviewer: Reviewer (Berlin)

MSC:
20F67 Hyperbolic groups and nonpositively curved groups
57M50 General geometric structures on low-dimensional manifolds
20F65 Geometric group theory
20M07 Varieties and pseudovarieties of semigroups
20E06 Free products of groups, free products with amalgamation, Higman-Neumann-Neumann extensions, and generalizations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] E Alibegović, A combination theorem for relatively hyperbolic groups, Bull. London Math. Soc. 37 (2005) 459 · Zbl 1074.57001 · doi:10.1112/S0024609304004059
[2] J Behrstock, C Drutu, L Mosher, Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity · Zbl 1220.20037 · doi:10.1007/s00208-008-0317-1
[3] M Bestvina, Geometric group theory problem list, available at http://math.utah.edu/ bestvina · Zbl 0998.57003
[4] M Bestvina, M Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85 · Zbl 0724.57029
[5] M Bestvina, M Feighn, M Handel, Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7 (1997) 215 · Zbl 0884.57002 · doi:10.1007/PL00001618
[6] B H Bowditch, Relatively hyperbolic groups, preprint, Southampton (1997) · Zbl 1259.20052
[7] B H Bowditch, The Cannon-Thurston map for punctured-surface groups, Math. Z. 255 (2007) 35 · Zbl 1138.57020 · doi:10.1007/s00209-006-0012-4
[8] I Bumagin, On definitions of relatively hyperbolic groups, Contemp. Math. 372, Amer. Math. Soc. (2005) 189 · Zbl 1091.20029
[9] F Dahmani, Combination of convergence groups, Geom. Topol. 7 (2003) 933 · Zbl 1037.20042 · doi:10.2140/gt.2003.7.933 · eudml:123509 · arxiv:math/0203258
[10] B Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998) 810 · Zbl 0985.20027 · doi:10.1007/s000390050075
[11] F. Gautero, Geodesics in trees of hyperbolic and relatively hyperbolic groups · Zbl 1397.20060 · arxiv:0710.4079
[12] É Ghys, P d l Harpe, editor, Sur les groupes hyperboliques d’après Mikhael Gromov, Progress in Math. 83, Birkhäuser (1990) · Zbl 0731.20025
[13] R Gitik, M Mitra, E Rips, M Sageev, Widths of subgroups, Trans. Amer. Math. Soc. 350 (1998) 321 · Zbl 0897.20030 · doi:10.1090/S0002-9947-98-01792-9
[14] M Gromov, Hyperbolic groups, Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75 · Zbl 0634.20015
[15] G Hruska, D Wise, Packing subgroups in relatively hyperbolic groups · Zbl 1188.20042 · doi:10.2140/gt.2009.13.1945 · arxiv:math/0609369
[16] M Kapovich, Hyperbolic manifolds and discrete groups, Progress in Math. 183, Birkhäuser (2001) · Zbl 0958.57001
[17] E Klarreich, Semiconjugacies between Kleinian group actions on the Riemann sphere, Amer. J. Math. 121 (1999) 1031 · Zbl 1011.30035 · doi:10.1353/ajm.1999.0034 · muse.jhu.edu
[18] M Mitra, Maps on boundaries of hyperbolic metric spaces, PhD thesis, UC Berkeley (1997)
[19] M Mitra, Cannon-Thurston maps for trees of hyperbolic metric spaces, J. Differential Geom. 48 (1998) 135 · Zbl 0906.20023
[20] M Mitra, Height in splittings of hyperbolic groups, Proc. Indian Acad. Sci. Math. Sci. 114 (2004) 39 · Zbl 1059.20040 · doi:10.1007/BF02829670
[21] M Mj, Cannon-Thurston maps for pared manifolds of bounded geometry · Zbl 1166.57009 · doi:10.2140/gt.2009.13.189 · arxiv:math/0503581
[22] M Mj, Cannon-Thurston maps for surface groups I: amalgamation geometry and split geometry · Zbl 1301.57013 · doi:10.4007/annals.2014.179.1.1
[23] M Mj, Cannon-Thurston maps, i-bounded geometry and a theorem of McMullen · Zbl 1237.57018 · arxiv:math.GT/0511041 · eudml:116466
[24] M Mj, A Pal, Relative hyperbolicity, trees of spaces and Cannon-Thurston maps · Zbl 1222.57013 · doi:10.1007/s10711-010-9519-2 · arxiv:0708.3578
[25] L Mosher, Hyperbolic extensions of groups, J. Pure Appl. Algebra 110 (1996) 305 · Zbl 0851.20037 · doi:10.1016/0022-4049(95)00081-X
[26] L Mosher, A hyperbolic-by-hyperbolic hyperbolic group, Proc. Amer. Math. Soc. 125 (1997) 3447 · Zbl 0895.20028 · doi:10.1090/S0002-9939-97-04249-4
[27] A Pal, Cannon-Thurston maps and relative hyperbolicity, PhD thesis, Indian Statistical Institute, Calcutta (expected 2009)
[28] Z Sela, Diophantine geometry over groups. I. Makanin-Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. (2001) 31 · Zbl 1018.20034 · doi:10.1007/s10240-001-8188-y · numdam:PMIHES_2001__93__31_0 · eudml:104176
[29] G A Swarup, Proof of a weak hyperbolization theorem, Q. J. Math. 51 (2000) 529 · Zbl 0965.57012 · doi:10.1093/qjmath/51.4.529
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.