zbMATH — the first resource for mathematics

Siegel’s Lemma with additional conditions. (English) Zbl 1192.11018
Summary: Let \(K\) be a number field, and let \(W\) be a subspace of \(K^N\), \(N\geq 1\). Let \(V_1,\dots,V_M\) be subspaces of \(K^N\) of dimension less than dimension of \(W\). We prove the existence of a point of small height in \(W\backslash \bigcup_{i=1}^m V_i\), providing an explicit upper bound on the height of such a point in terms of heights of \(W\) and \(V_1,\dots,V_M\). Our main tool is a counting estimate we proved for the number of points of a subspace of \(K^N\) inside of an adelic cube [Monatsh. Math. 147, No. 1, 25–41 (2006; Zbl 1091.11024)].
As corollaries to our main result we derive an explicit bound on the height of a nonvanishing point for a decomposable form and an effective subspace extension lemma.

11D04 Linear Diophantine equations
11H06 Lattices and convex bodies (number-theoretic aspects)
11H46 Products of linear forms
11J13 Simultaneous homogeneous approximation, linear forms
Full Text: DOI arXiv
[1] Bombieri, E.; Cohen, P.B., Siegel’s lemma, Padé approximations and Jacobians, Ann. scuola norm. sup. Pisa cl. sci. (4), 25, 1/2, 155-178, (1998) · Zbl 1073.11518
[2] Bombieri, E.; Vaaler, J.D., On Siegel’s lemma, Invent. math., 73, 1, 11-32, (1983) · Zbl 0533.10030
[3] Cassels, J.W.S., An introduction to the geometry of numbers, (1959), Springer Berlin · Zbl 0086.26203
[4] Fukshansky, L., Integral points of small height outside of a hypersurface, Monatsh. math., 147, 1, 25-41, (2006) · Zbl 1091.11024
[5] L. Fukshansky, Algebraic points of small height with additional arithmetic conditions, PhD thesis, University of Texas at Austin, 2004
[6] Gordan, P., Über den grossten gemeinsamen factor, Math. ann., 7, 443-448, (1873) · JFM 06.0090.01
[7] Hodge, W.V.D.; Pedoe, D., Methods of algebraic geometry, vol. 1, (1947), Cambridge Univ. Press Cambridge · Zbl 0055.38705
[8] Lang, S., Algebraic number theory, (1970), Addison-Wesley Reading, MA · Zbl 0211.38404
[9] Siegel, C.L., Über einige anwendungen diophantischer approximationen, Abh. der preuss. akad. der wissenschaften phys.-math. kl., 1, 209-266, (1929) · JFM 56.0180.05
[10] Thue, A., Über annäherungswerte algebraischer zahlen, J. reine angew. math., 135, 284-305, (1909) · JFM 40.0265.01
[11] Thunder, J.L., An asymptotic estimate for heights of algebraic subspaces, Trans. amer. math. soc., 331, 395-424, (1992) · Zbl 0773.11041
[12] Thunder, J.L., The number of solutions of bounded height to a system of linear equations, J. number theory, 43, 228-250, (1993) · Zbl 0773.11022
[13] Vaaler, J.D., The best constant in Siegel’s lemma, Monatsh. math., 140, 1, 71-89, (2003) · Zbl 1034.11038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.