×

Porous convection with Cattaneo heat flux. (English) Zbl 1191.80031

Summary: We study the problem of thermal convection in a horizontal layer of Darcy porous material saturated with an incompressible Newtonian fluid, with gravity acting downward. The constitutive equation for the heat flux is taken to be one of Cattaneo type. Care must be taken with the choice of objective derivative for the rate of change of the heat flux. Here we employ a recent model due to Professor C. Christov as well as one suggested many years ago by Professor N. Fox. The thermal relaxation effect in both classes of heat flux law is found to be significant if the Cattaneo number is sufficiently large, and the convection mechanism switches from stationary convection to oscillatory convection with narrower cells. The transition point is calculated and the convection thresholds are derived analytically.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76S05 Flows in porous media; filtration; seepage
76R10 Free convection
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Barbera, E.; Curro, C.; Valenti, G.: A hyperbolic reaction – diffusion model for the hantavirus infection, Math. methods appl. Sci. 31, 481-499 (2008) · Zbl 1180.35340 · doi:10.1002/mma.929
[2] Bargmann, S.; Greve, R.; Steinmann, P.: Simulation of cryovolcanism on saturns Moon Enceladus with the Green – naghdi theory of thermoelasticity, Bull. glaciol. Res. 26, 23-32 (2008)
[3] Cattaneo, C.: Sulla conduzione del calore, Atti sem. Mat. fis. Univ. modena 3, 83-101 (1948) · Zbl 0035.26203
[4] Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability, (1981) · Zbl 0142.44103
[5] Christov, C. I.: On frame indifferent formulation of the Maxwell – Cattaneo model of finite-speed heat conduction, Mech. res. Commun. 36, 481-486 (2009) · Zbl 1258.80001
[6] Dai, W.; Wang, H.; Jordan, P. M.; Mickens, R. E.; Bejan, A.: A mathematical model for skin burn injury induced by radiation heating, Int. J. Heat mass transfer 51, 5497-5510 (2008) · Zbl 1151.80302 · doi:10.1016/j.ijheatmasstransfer.2008.01.006
[7] Dauby, P. C.; Nélis, M.; Lebon, G.: Generalized Fourier equations and thermoconvective instabilities, Rev. mex. Fis. 48, 57-62 (2002)
[8] Dolak, Y.; Hillen, T.: Cattaneo models for chemosensitive movement, J. math. Biol. 46, 461-478 (2003) · Zbl 1062.92501
[9] Dongarra, J. J.; Straughan, B.; Walker, D. W.: Chebyshev tau – QZ algorithm methods for calculating spectra of hydrodynamic stability problems, Appl. numer. Math. 22, 399-435 (1996) · Zbl 0867.76025 · doi:10.1016/S0168-9274(96)00049-9
[10] Franchi, F.; Straughan, B.: Thermal convection at low temperature, J. non-equilib. Thermodyn. 19, 368-374 (1994) · Zbl 0817.76018 · doi:10.1515/jnet.1994.19.4.368
[11] Jordan, P. M.: Growth and decay of shock and acceleration waves in a traffic flow model with relaxation, Physica D 207, 220-229 (2005) · Zbl 1078.35073 · doi:10.1016/j.physd.2005.06.002
[12] Jordan, P. M.: Growth, decay and bifurcation of shock amplitudes under the type-II flux law, Proc. R. Soc. lond. A 463, 2783-2798 (2007) · Zbl 1132.35413 · doi:10.1098/rspa.2007.1895
[13] Lebon, G.; Cloot, A.: Bénard – Marangoni instability in a Maxwell – Cattaneo fluid, Phys. lett. A 105, 361-364 (1984)
[14] Liu, H.; Bussmann, M.; Mostaghimi, J.: A comparison of hyperbolic and parabolic models of phase change of a pure metal, Int. J. Heat mass transfer 52, 1177-1184 (2009) · Zbl 1157.80387 · doi:10.1016/j.ijheatmasstransfer.2008.08.030
[15] Miranville, A.; Quintanilla, R.: A generalization of the caginalp phase-field system based on the Cattaneo law, Nonlinear anal. 71, 2278-2290 (2009) · Zbl 1167.35304 · doi:10.1016/j.na.2009.01.061
[16] Mitra, K.; Kumar, S.; Vedavarz, A.; Moallemi, M. K.: Experimental evidence of hyperbolic heat conduction in processed meat, Trans. ASME J. Heat transfer 117, 568-573 (1995)
[17] Nield, D. A.; Bejan, A.: Convection in porous media, (2006) · Zbl 1256.76004
[18] Puri, P.; Jordan, P. M.: Wave structure in Stokes second problem for a dipolar fluid with nonclassical heat conduction, Acta mech. 133, 145-160 (1999) · Zbl 0922.76038 · doi:10.1007/BF01179015
[19] Puri, P.; Jordan, P. M.: Stokes’s first problem for a dipolar fluid with nonclassical heat conduction, J. eng. Math. 36, 219-240 (1999) · Zbl 0968.76005 · doi:10.1023/A:1004454227370
[20] Puri, P.; Kythe, P. K.: Discontinuities in velocity gradients and temperature in the Stokes first problem with nonclassical heat conduction, Q. appl. Math. 55, 167-176 (1997) · Zbl 0871.35078
[21] Puri, P.; Kythe, P. K.: Stokes first and second problems for rivlin – ericksen fluids with nonclassical heat conduction, J. heat transfer ASME 120, 44-50 (1998)
[22] Quintanilla, R.; Racke, R.: A note on stability in dual-phase-lag heat conduction, Int. J. Heat mass transfer 49, 1209-1213 (2006) · Zbl 1189.80025 · doi:10.1016/j.ijheatmasstransfer.2005.10.016
[23] Quintanilla, R.; Racke, R.: A note on stability in three-phase-lag heat conduction, Int. J. Heat mass transfer 51, 24-29 (2008) · Zbl 1140.80363 · doi:10.1016/j.ijheatmasstransfer.2007.04.045
[24] Reverberi, A. P.; Bagnerini, P.; Maga, L.; Bruzzone, A. G.: On the non-linear Maxwell – Cattaneo equation with non-constant diffusivity: shock and discontinuity waves, Int. J. Heat mass transfer 51, 5327-5332 (2008) · Zbl 1154.80342 · doi:10.1016/j.ijheatmasstransfer.2008.01.039
[25] Saidane, A.; Aliouat, S.; Benzohra, M.; Ketata, M.: A transmission line matrix (TLM) study of hyperbolic heat conduction in biological materials, J. food eng. 68, 491-496 (2005)
[26] Straughan, B.; Franchi, F.: Bénard convection and the Cattaneo law of heat conduction, Proc. R. Soc. edinb. A 96, 175-178 (1984) · Zbl 0544.76042 · doi:10.1017/S0308210500020564
[27] Straughan, B.: The energy method, stability, and nonlinear convection, Ser. appl. Math. sci 91 (2004) · Zbl 1032.76001
[28] Straughan, B.: Stability and wave motion in porous media, Ser. appl. Math. sci 165 (2008) · Zbl 1149.76002
[29] Vadasz, P.: Lack of oscillations in dual-phase-lagging heat conduction for a porous slab subject to heat flux and temperature, Int. J. Heat mass transfer 48, 2822-2828 (2005) · Zbl 1189.76613 · doi:10.1016/j.ijheatmasstransfer.2005.02.005
[30] Vadasz, J. J.; Govender, S.; Vadasz, P.: Heat transfer enhancement in nano-fluids suspensions: possible mechanisms and explanations, Int. J. Heat mass transfer 48, 2673-2683 (2005)
[31] Vedavarz, A.; Mitra, K.; Kumar, S.; Moallemi, M. K.: Effect of hyperbolic heat conduction on temperature distribution in laser irradiated tissue with blood perfusion, Adv. biol. Heat mass transfer ASME HTD 231, 7-16 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.