zbMATH — the first resource for mathematics

Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick. (English) Zbl 1191.80011
Summary: The effect of water-based Al\(_{2}\)O\(_{3}\) nanofluids as working fluid on the thermal performance of a flat micro-heat pipe with a rectangular grooved wick is investigated. For the purpose, the axial variations of the wall temperature, the evaporation and condensation rates are considered by solving the one-dimensional conduction equation for the wall and the augmented Young-Laplace equation for the phase change process. In particular, the thermophysical properties of nanofluids as well as the surface characteristics formed by nanoparticles such as a thin porous coating are considered. From the comparison of the thermal performance using both DI water and nanofluids, it is found that the thin porous coating layer formed by nanoparticles suspended in nanofluids is a key effect of the heat transfer enhancement for the heat pipe using nanofluids. Also, the effects of the volume fraction and the size of nanoparticles on the thermal performance are studied. The results shows the feasibility of enhancing the thermal performance up to 100% although water-based Al\(_{2}\)O\(_{3}\) nanofluids with the concentration less than 1.0% is used as working fluid. Finally, it is shown that the thermal resistance of the nanofluid heat pipe tends to decrease with increasing the nanoparticle size, which corresponds to the previous experimental results.

80A20 Heat and mass transfer, heat flow (MSC2010)
82D80 Statistical mechanics of nanostructures and nanoparticles
76T10 Liquid-gas two-phase flows, bubbly flows
80A22 Stefan problems, phase changes, etc.
76S05 Flows in porous media; filtration; seepage
PDF BibTeX Cite
Full Text: DOI
[1] Ma, H. B.; Wilson, C.; Borgmeyer, B.; Park, K.; Yu, Q.: Effect of nanofluid on the heat transport capability in an oscillating heat pipe, Appl. phys. Lett. 88, 143116 (2006)
[2] Yang, X. F.; Liu, Z.; Zhao, J.: Heat transfer performance of a horizontal micro-grooved heat pipe using cuo nanofluid, J. micromech. Microeng. 18, 035038 (2008)
[3] S.U.S. Choi, Enhancing thermal conductivity of fluids with nano-particles, in: D.A. Singer, H.P. Wang (Eds.), Developments and Applications of Non-Newtonian Flows, FED 231/MD 66, ASME, New York, 1995, pp. 99 – 105.
[4] Lee, S.; Choi, S. U. S.; Eastman, J. A.: Measuring thermal conductivity of fluids containing oxide nanoparticles, ASME J. Heat transfer 121, 280-289 (1999)
[5] Das, S. K.; Putra, N.; Thiesen, P.; Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids, ASME J. Heat transfer 125, 567-574 (2003)
[6] Wen, D.; Ding, Y.: Experimental investigation into convective heat transfer of nanofluid at the entrance region under laminar flow conditions, Int. J. Heat mass transfer 47, 5181-5188 (2004)
[7] Hwang, K. S.; Jang, S. P.; Choi, S. U. S.: Flow and convective heat transfer characteristics of water-based al2o3 nanofluids in fully developed laminar flow regime, Int. J. Heat mass transfer 52, 193-199 (2009) · Zbl 1156.80333
[8] Bang, I. C.; Chang, S. H.: Boiling heat transfer performance and phenomena of al2o3 – water nanofluids from a plain surface in a pool, Int. J. Heat mass transfer 48, 2407-2419 (2005)
[9] Tsai, C. Y.; Chien, H. T.; Chan, B.; Chen, P. H.; Ding, P. P.; Luh, T. Y.: Effect of structural characteristics of gold nanoparticles in nanofluid on heat pipe thermal performance, Mater. lett. 58, 1461-1465 (2004)
[10] Kang, S.; Wei, W.; Tsai, S.; Huang, C.: Experimental investigation of nanofluids on sintered heat pipe thermal performance, Appl. therm. Eng. 29, 973-979 (2009)
[11] Liu, Z. H.; Yang, X. F.; Guo, G. L.: Effect of nanoparticles in nanofluid on thermal performance in a miniature thermosyphon, J. appl. Phys. 102, 013526 (2007)
[12] Liu, Z. H.; Xiong, J. G.; Bao, R.: Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface, Int. J. Multiphase flow 33, 1284-1295 (2007)
[13] Chon, C. H.; Paik, S.; Jr., J. B. Tipton; Kihm, K. D.: Effect of nanoparticle sizes and number densities on the evaporation and dryout characteristics for strongly pinned nanofluid droplets, Langmuir 23, 2953-2960 (2007)
[14] Wang, J.; Catton, I.: Enhanced evaporation heat transfer in triangular grooves covered with a thin fine porous layer, Appl. therm. Eng. 21, 1721-1737 (2001)
[15] Do, K. H.; Kim, S. J.; Garimella, S. V.: A mathematical model for analyzing the thermal characteristics of a flat micro-heat pipe with a grooved Wick, Int. J. Heat mass transfer 51, 4637-4650 (2008) · Zbl 1154.80317
[16] Kim, S. J.; Seo, J. K.; Do, K. H.: Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved Wick structure, Int. J. Heat mass transfer 42, 3405-3418 (2003)
[17] Khrustalev, D.; Faghri, A.: Thermal analysis of a micro-heat pipe, ASME J. Heat transfer 116, 189-198 (1994)
[18] Jang, S. P.; Choi, S. U. S.: Effects of various parameters on nanofluid thermal conductivity, ASME J. Heat transfer 129, 617-623 (2007)
[19] Jang, S. P.; Lee, J. -H.; Hwang, K. S.; Choi, S. U. S.: Particle concentration and tube size dependence of viscosities of al2o3 – water nanofluids flowing through micro- and minitubes, Appl. phys. Lett. 91, 243112 (2007)
[20] Smith, J. M.; Van Ness, H. C.: Introduction to chemical engineering thermodynamics, (1987)
[21] Jr., P. C. Wayner; Kao, K. Y.; Lacroix, L. V.: The interline heat transfer coefficient of an evaporating wetting film, Int. J. Heat mass transfer 19, 487-492 (1976)
[22] Jr., P. C. Wayner: The effect of interfacial mass transport on flow in thin liquid films, Colloids surf. 52, 71-84 (1991)
[23] Chi, S. W.: Heat pipe theory and practice, (1976)
[24] Lefèvre, F.; Rullière, R.; Pandraud, G.; Lallemand, M.: Prediction of the temperature field in flat plate heat pipes with micro-grooves – experimental validation, Int. J. Heat mass transfer 51, 4083-4094 (2008) · Zbl 1148.80326
[25] Faghri, A.: Heat pipe science and technology, (1995)
[26] Kaviany, M.: Principles of heat transfer in porous media, (1995) · Zbl 0889.76002
[27] Hopkins, R.; Faghri, A.; Khrustalev, D.: Flat miniature heat pipes with micro-capillary grooves, ASME J. Heat transfer 121, 102-109 (1999)
[28] Stephan, P. C.; Busse, C. A.: Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls, Int. J. Heat mass transfer 35, 383-391 (1992)
[29] Stepanov, V. G.; Volyak, L. D.; Tarlakov, Y. V.: Wetting contact angles for some systems, J. eng. Phys. 32, 1000-1003 (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.