zbMATH — the first resource for mathematics

Three-qubit entangled embeddings of \(CPT\) and Dirac groups within \(E_8\) Weyl group. (English) Zbl 1190.81029
Summary: In quantum information context, the groups generated by Pauli spin matrices, and Dirac gamma matrices, are known as the single qubit Pauli group \({\mathcal P}\), and two-qubit Pauli group \({\mathcal P}_2\), respectively. It has been found [M. Socolovsky, Int. J. Theor. Phys. 43, No. 9, 1941–1967 (2004; Zbl 1073.81033)] that the \(CPT\) group of the Dirac equation is isomorphic to \({\mathcal P}\). One introduces a two-qubit entangling orthogonal matrix \(S\) basically related to the \(CPT\) symmetry. With the aid of the two-qubit swap gate, the \(S\) matrix allows the generation of the three-qubit real Clifford group and, with the aid of the Toffoli gate, the Weyl group \(W(E_8)\) is generated [M. Planat, “Clifford group dipoles and the enactment of Weyl/Coxeter group W(E8) by entangling gates”, preprint, arxiv:0904.3691 (2009)]. In this paper, one derives three-qubit entangling groups \(\widetilde{\mathcal P}\) and \(\widetilde{\mathcal P}_2\), isomorphic to the \(CPT\) group \({\mathcal P}\) and to the Dirac group \({\mathcal P}_2\), that are embedded into \(W(E_8)\). One discovers a new class of pure three-qubit quantum states with no-vanishing concurrence and three-tangle that we name \(CPT\) states. States of the \(GHZ\) and \(CPT\) families, and also chain-type states, encode the new representation of the Dirac group and its \(CPT\) subgroup.

81P68 Quantum computation
81P40 Quantum coherence, entanglement, quantum correlations
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
Full Text: DOI arXiv
[1] Socolovsky, M.: The CPT group of the Dirac field. Int. J. Theor. Phys. 43, 2004 (1941) · Zbl 1073.81033
[2] Planat, M.: Clifford group dipoles and the enactment of Weyl/Coxeter group W(E8) by entangling gates. (2009). Preprint 0904.3691 [quant-ph] · Zbl 1225.81038
[3] Mermin, N.D.: Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 65, 803 (1993) · doi:10.1103/RevModPhys.65.803
[4] Kauffman, L.H., Lomonaco, S.J.: Braiding operators are universal quantum gates. New J. Phys. 6, 134 (2004) · doi:10.1088/1367-2630/6/1/134
[5] Planat, M., Jorrand, P.: Clifford groups of quantum gates, BN-pairs and smooth cubic surfaces. J. Phys. A: Math. Theor. 41, 182001 (2008) · Zbl 1139.81022 · doi:10.1088/1751-8113/41/18/182001
[6] Varlamov, V.V.: The CPT group in the de Sitter space. Ann. Fond. Louis Broglie 29(2), 969 (2004) · Zbl 1062.81085
[7] Nebe, G., Rains, E.M., Sloane, N.J.A.: The invariants of the Clifford groups. Des. Codes Cryptogr. 24, 99 (2001) · Zbl 1002.11057 · doi:10.1023/A:1011233615437
[8] Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000) · doi:10.1103/PhysRevA.61.052306
[9] Dür, W., Vidal, G., Cirac, J.J.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000) · doi:10.1146/annurev.physiol.62.1.1
[10] Lohmayer, R., Osterloh, A., Siewert, J., Uhlman, A.: Entangled three-qubit states without concurrence and three-tangle. Phys. Rev. Lett. 97, 260502 (2006) · Zbl 1228.81071 · doi:10.1103/PhysRevLett.97.260502
[11] Gross, D., Audenaert, K., Eisert, J.: Evenly distributed unitaries: on the structure of unitary designs. J. Math. Phys. 48, 052104 (2007) · Zbl 1144.81351 · doi:10.1063/1.2716992
[12] Weeks, F.: Exact polynomial eigenmodes for homogeneous spherical 3-manifolds. Class. Quantum Gravity 23, 6971 (2006) · Zbl 1133.83419 · doi:10.1088/0264-9381/23/23/023
[13] Green, M.B., Schwarz, J., Witten, E.: Superstring Theory. Cambridge University Press, Cambridge (1987) · Zbl 0619.53002
[14] Go, A., Bay, A., et al. (the Belle Collaboration): Measurement of Einstein-Podolsky-Rosen-type flavor entanglement in \(\Upsilon(4S)\rightarrow B^{0}\bar{B}^{0}\) decays. Phys. Rev. Lett. 99, 131802 (2007) · doi:10.1103/PhysRevLett.99.131802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.