×

zbMATH — the first resource for mathematics

Homotopy based solutions of the Navier-Stokes equations for a porous channel with orthogonally moving walls. (English) Zbl 1190.76132
Editorial remark: No review copy delivered.

MSC:
76-XX Fluid mechanics
PDF BibTeX Cite
Full Text: DOI
References:
[1] DOI: 10.1063/1.1721476 · Zbl 0050.41101
[2] R. M. Terrill, ”Laminar flow in a uniformly porous channel,” Aeronaut. Q.AEQUAY0001-9259 15, 299 (1964).
[3] M. Morduchow, ”On laminar flow through a channel or tube with injection: Application of method of averages,” Q. J. Mech. Appl. Math.QJMMAV0033-5614 14, 361 (1957). · Zbl 0077.38902
[4] J. F. M. White, B. F. Barfield, and M. J. Goglia, ”Laminar flow in a uniformly porous channel,” Trans. ASME, J. Appl. Mech.JAMCAV0021-8936 25, 613 (1958). · Zbl 0085.39303
[5] DOI: 10.1063/1.1722024 · Zbl 0065.18701
[6] DOI: 10.1093/qjmam/20.2.233 · Zbl 0146.23602
[7] DOI: 10.1007/BF01535424 · Zbl 0325.76035
[8] DOI: 10.1137/0134042 · Zbl 0376.76069
[9] DOI: 10.1063/1.864735
[10] DOI: 10.1063/1.864736
[11] DOI: 10.1016/0169-5983(88)90021-4
[12] DOI: 10.1098/rspa.1956.0050 · Zbl 0074.43003
[13] DOI: 10.1063/1.1722355 · Zbl 0072.42704
[14] DOI: 10.1017/S002211206000133X · Zbl 0104.20401
[15] DOI: 10.1007/BF01593923
[16] DOI: 10.1093/qjmam/21.4.413 · Zbl 0187.50903
[17] DOI: 10.1017/S0022112081000323 · Zbl 0491.76037
[18] DOI: 10.1017/S0022112090002051 · Zbl 0692.76034
[19] DOI: 10.1017/S0956792500000607 · Zbl 0744.76041
[20] DOI: 10.1063/1.1567719 · Zbl 1186.76126
[21] J. Majdalani and C. Zhou, ”Moderate-to-large injection and suction driven channel flows with expanding or contracting walls,” J. Appl. Math. Mech.JAMMAR0021-8928 83, 181 (2003). · Zbl 1116.76348
[22] DOI: 10.1016/S0021-9290(02)00186-0
[23] DOI: 10.2514/2.5987
[24] A. D. MacGillivray and C. Lu, ”Asymptotic solution of a laminar flow in a porous channel with large suction: A nonlinear turning point problem,” Methods Appl. Anal.1073-2772 1, 229 (1994). · Zbl 0835.34030
[25] DOI: 10.1093/imamat/49.2.139 · Zbl 0774.76027
[26] DOI: 10.1098/rspa.1997.0040 · Zbl 1030.34500
[27] DOI: 10.1016/j.cnsns.2008.04.013 · Zbl 1221.65126
[28] DOI: 10.1016/S0020-7462(96)00101-1 · Zbl 1031.76542
[29] S. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method (Chapman and Hall, London/CRC, Boca Raton, FL, 2003).
[30] DOI: 10.1111/j.1467-9590.2007.00387.x
[31] DOI: 10.1016/S0096-3003(02)00790-7 · Zbl 1086.35005
[32] DOI: 10.1016/j.jnnfm.2006.06.003 · Zbl 1195.76070
[33] DOI: 10.1016/j.euromechflu.2005.12.003 · Zbl 1105.76061
[34] DOI: 10.1016/j.physleta.2006.07.065 · Zbl 1236.80010
[35] DOI: 10.1088/1751-8113/40/29/015 · Zbl 1331.70041
[36] H. Song and L. Tao, ”Homotopy analysis of 1d unsteady, nonlinear groundwater flow through porous media,” J. Coastal Res.JCRSEK0749-0208 50, 292 (2007).
[37] DOI: 10.1016/j.ijengsci.2007.04.009 · Zbl 1213.76137
[38] DOI: 10.1016/j.amc.2006.12.074 · Zbl 1125.65063
[39] DOI: 10.1002/fld.1696 · Zbl 1210.76033
[40] F. White, Viscous Fluid Flow (McGraw-Hill, New York, 1991), pp. 135–136.
[41] DOI: 10.1016/j.cnsns.2008.06.013 · Zbl 1221.76068
[42] DOI: 10.1137/S0036141096297704 · Zbl 0886.34053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.