×

zbMATH — the first resource for mathematics

Open-loop control of compressible afterbody flows using adjoint methods. (English) Zbl 1190.76089
Editorial remark: No review copy delivered.

MSC:
76-XX Fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. G. Siegel and H. F. Fasel, ”Effect of forcing on the wake drag of an axisymmetric bluff body,” AIAA Paper No. 2001-0736, 2001.
[2] J. Seidel, S. Siegel, T. Jeans, S. Aradag, K. Cohen, and T. McLaughlin, ”Analysis of an axisymmetric bluff body wake using Fourier transform and POD,” AIAA Paper No. 2008-0552, 2008.
[3] S. Siegel, J. Seidel, K. Cohen, S. Aradag, and T. McLaughlin, ”Open loop transient forcing of an axisymmetric bluff body wake,” AIAA Paper No. 2008-0595, 2008.
[4] DOI: 10.1017/S0022112072000874
[5] DOI: 10.1017/S0022112078000580
[6] DOI: 10.2514/1.7000
[7] DOI: 10.1146/annurev.fluid.39.050905.110149 · Zbl 1136.76022
[8] DOI: 10.1017/S0022112090000933
[9] H. Illy, P. Geffroy, and L. Jacquin, ”Control of cavity flow by means of a spanwise cylinder,” Proceedings of the 21st International Congress on Theoretical and Applied Mechanics, Warsaw, 2004.
[10] W. A. Mair, ”The effect of a rear-mounted disc on the drag of a blunt-based body of revolution,” Aeronaut. Q.AEQUAY0001-9259 16, 350 (1965).
[11] DOI: 10.1016/S0997-7546(00)00112-6 · Zbl 0961.76502
[12] DOI: 10.2514/1.34674
[13] W. Bearman, ”The effect of base bleed on the flow behind a two-dimensional model with a blunt trailing edge,” Aeronaut. Q.AEQUAY0001-9259 18, 207 (1967).
[14] DOI: 10.1017/S0022112069002448
[15] N. S. Diaconis, J. R. Jack, and R. J. Wisniewski, ”Boundary-layer transition at Mach 3.12 as affected by cooling and nose blunting,” NASA Technical Report No. 3928, 1957.
[16] J. R. Jack, R. J. Wisniewski, and N. S. Diaconis, ”Effects of extreme surface cooling on boundary-layer transition,” NASA Technical Report No. 4094, 1957.
[17] P. Klebanoff, G. Schubauer, and K. Tidstrom, ”Measurements of the effect of two-dimensional and three-dimensional roughness elements on boundary-layer transition,” J. Aeronaut. Sci.JASCAR0095-9812 22, 803 (1955).
[18] DOI: 10.1088/0022-3727/40/3/S01
[19] DOI: 10.1017/S0022112087002234 · Zbl 0639.76041
[20] DOI: 10.1007/BF00127673
[21] DOI: 10.1016/S0376-0421(02)00030-1
[22] DOI: 10.1016/j.paerosci.2004.06.001
[23] D. C. Hill, ”A theoretical approach for analyzing the restabilization of wakes,” NASA Technical Report No. 103858, 1992.
[24] DOI: 10.1017/S0022112008003662 · Zbl 1165.76012
[25] DOI: 10.1017/S0022112007005654 · Zbl 1115.76028
[26] DOI: 10.1023/A:1011434805046 · Zbl 1094.76513
[27] P. Meliga, D. Sipp, and J.-M. Chomaz, ”Effect of compressibility on the global stability of axisymmetric wake flows,” J. Fluid Mech.JFLSA70022-1120 (to be published). · Zbl 1205.76112
[28] DOI: 10.1016/S0167-2789(99)00206-7 · Zbl 0981.76026
[29] DOI: 10.1063/1.1773071 · Zbl 1187.76476
[30] DOI: 10.1017/S0022112009006673 · Zbl 1181.76092
[31] DOI: 10.1146/annurev.fluid.36.050802.121930 · Zbl 1076.76040
[32] J. Matsumoto and M. Kawahara, ”Stable shape identification for fluid-structure interaction problem using MINI element,” J. Appl. Mech.JAMCAV0021-8936 3, 263 (2000).
[33] DOI: 10.1017/S002211200200232X · Zbl 1026.76019
[34] DOI: 10.1137/S0895479894246905 · Zbl 0884.65021
[35] DOI: 10.1145/992200.992205 · Zbl 1072.65036
[36] DOI: 10.1017/S0022112007005903 · Zbl 1115.76029
[37] DOI: 10.1017/S0022112009007290 · Zbl 1183.76721
[38] DOI: 10.1017/S0022112093003519
[39] DOI: 10.1017/S0022112088001417
[40] DOI: 10.1017/S0022112093002150 · Zbl 0780.76027
[41] DOI: 10.1017/S0022112005005112 · Zbl 1073.76027
[42] DOI: 10.1017/S0022112098003206
[43] DOI: 10.1063/1.2909609 · Zbl 1182.76238
[44] F. Giannetti and P. Luchini, ”Receptivity of the circular cylinder’s first instability,” Proceedings of the Fifth European Fluid Mechanics Conference, Toulouse, 2003.
[45] DOI: 10.1146/annurev.fluid.37.061903.175810 · Zbl 1117.76027
[46] DOI: 10.1002/(SICI)1097-0363(19990915)31:1<53::AID-FLD955>3.0.CO;2-Z · Zbl 0962.76030
[47] DOI: 10.1063/1.1564605 · Zbl 1186.76015
[48] O. Marquet, D. Sipp, L. Jacquin, and J. -M. Chomaz, ”Multiple timescale and sensitivity analysis for the passive control of the cylinder flow,” AIAA Paper No. 2008-4228, 2008.
[49] DOI: 10.1017/S002211200200318X · Zbl 1041.76029
[50] DOI: 10.1017/S0022112006000140 · Zbl 1122.76033
[51] P. J. Schmid and D. S. Henningson, Stability and Transition in Shear Flows (Springer-Verlag, New York, 2001). · Zbl 0966.76003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.