zbMATH — the first resource for mathematics

Application of variational iteration method to fractional hyperbolic partial differential equations. (English) Zbl 1190.65185
Summary: The solution of the fractional hyperbolic partial differential equation is obtained by means of the variational iteration method. Our numerical results are compared with those obtained by the modified Gauss elimination method. Our results reveal that the technique introduced here is very effective, convenient, and quite accurate to one-dimensional fractional hyperbolic partial differential equations. Application of variational iteration technique to this problem has shown the rapid convergence of the sequence constructed by this method to the exact solution.

65N99 Numerical methods for partial differential equations, boundary value problems
35L99 Hyperbolic equations and hyperbolic systems
26A33 Fractional derivatives and integrals
Full Text: DOI EuDML
[1] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[2] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science, Yverdon, Switzerland, 1993. · Zbl 0924.44003 · doi:10.1080/10652469308819017
[3] J.-L. Lavoie, T. J. Osler, and R. Tremblay, “Fractional derivatives and special functions,” SIAM Review, vol. 18, no. 2, pp. 240-268, 1976. · Zbl 0324.44002 · doi:10.1137/1018042
[4] V. E. Tarasov, “Fractional derivative as fractional power of derivative,” International Journal of Mathematics, vol. 18, no. 3, pp. 281-299, 2007. · Zbl 1119.26011 · doi:10.1142/S0129167X07004102
[5] A. E. M. El-Mesiry, A. M. A. El-Sayed, and H. A. A. El-Saka, “Numerical methods for multi-term fractional (arbitrary) orders differential equations,” Applied Mathematics and Computation, vol. 160, no. 3, pp. 683-699, 2005. · Zbl 1062.65073 · doi:10.1016/j.amc.2003.11.026
[6] A. M. A. El-Sayed and F. M. Gaafar, “Fractional-order differential equations with memory and fractional-order relaxation-oscillation model,” Pure Mathematics and Applications, vol. 12, no. 3, pp. 296-310, 2001. · Zbl 1006.34008
[7] A. M. A. El-Sayed, A. E. M. El-Mesiry, and H. A. A. El-Saka, “Numerical solution for multi-term fractional (arbitrary) orders differential equations,” Computational & Applied Mathematics, vol. 23, no. 1, pp. 33-54, 2004. · Zbl 1213.34025 · doi:10.1590/S0101-82052004000100002 · www.scielo.br
[8] R. Gorenflo and F. Mainardi, “Fractional calculus: integral and differential equations of fractional order,” in Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996), A. Carpinteri and F. Mainardi, Eds., vol. 378 of CISM Courses and Lectures, pp. 223-276, Springer, Vienna, Austria, 1997. · Zbl 0916.34011
[9] D. Matignon, “Stability results for fractional differential equations with applications to control processing,” in Computational Engineering in System Application, Vol. 2, pp. 963-968, IMACS, IEEE-SMC, Lille, France, 1996.
[10] A. Ashyralyev, “A note on fractional derivatives and fractional powers of operators,” Journal of Mathematical Analysis and Applications, vol. 357, no. 1, pp. 232-236, 2009. · Zbl 1175.26004 · doi:10.1016/j.jmaa.2009.04.012
[11] I. Podlubny and A. M. A. El-Sayed, On Two Definitions of Fractional Calculus, Slovak Academy of Science-Institute of Experimental Physics, 1996.
[12] J.-H. He, “Variational iteration method for delay differential equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 2, no. 4, pp. 235-236, 1997. · Zbl 0924.34063 · doi:10.1016/S1007-5704(97)90008-3
[13] J.-H. He, “Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics,” International Journal of Turbo and Jet Engines, vol. 14, no. 1, pp. 23-28, 1997.
[14] J.-H. He, “Approximate solution of nonlinear differential equations with convolution product nonlinearities,” Computer Methods in Applied Mechanics and Engineering, vol. 167, no. 1-2, pp. 69-73, 1998. · Zbl 0932.65143 · doi:10.1016/S0045-7825(98)00109-1
[15] J.-H. He, “Approximate analytical solution for seepage flow with fractional derivatives in porous media,” Computer Methods in Applied Mechanics and Engineering, vol. 167, no. 1-2, pp. 57-68, 1998. · Zbl 0942.76077 · doi:10.1016/S0045-7825(98)00108-X
[16] J.-H. He, “Variational iteration method-a kind of non-linear analytical technique: some examples,” International Journal of Non-Linear Mechanics, vol. 34, no. 4, pp. 699-708, 1999. · Zbl 1342.34005
[17] J.-H. He, “Variational iteration method for autonomous ordinary differential systems,” Applied Mathematics and Computation, vol. 114, no. 2-3, pp. 115-123, 2000. · Zbl 1027.34009 · doi:10.1016/S0096-3003(99)00104-6
[18] J.-H. He, “Variational theory for linear magneto-electro-elasticity,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 2, no. 4, pp. 309-316, 2001. · Zbl 1083.74526 · doi:10.1515/IJNSNS.2001.2.4.309
[19] J.-H. He, “Variational principle for nano thin film lubrication,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 4, no. 3, pp. 313-314, 2003. · Zbl 06942026
[20] J.-H. He, “Variational principles for some nonlinear partial differential equations with variable coefficients,” Chaos, Solitons & Fractals, vol. 19, no. 4, pp. 847-851, 2004. · Zbl 1135.35303 · doi:10.1016/S0960-0779(03)00265-0
[21] J.-H. He, Generalized Variational Principles in Fluids, Science & Culture Publishing House of China, Hong Kong, 2003. · Zbl 1054.76001
[22] Z. Odibat and S. Momani, “Numerical methods for nonlinear partial differential equations of fractional order,” Applied Mathematical Modelling, vol. 32, no. 1, pp. 28-39, 2008. · Zbl 1133.65116 · doi:10.1016/j.apm.2006.10.025
[23] Z. M. Odibat and S. Momani, “Application of variational iteration method to nonlinear differential equations of fractional order,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 7, no. 1, pp. 27-34, 2006. · Zbl 1378.76084
[24] S. Momani and S. Abuasad, “Application of He/s variational iteration method to Helmholtz equation,” Chaos, Solitons & Fractals, vol. 27, no. 5, pp. 1119-1123, 2006. · Zbl 1086.65113 · doi:10.1016/j.chaos.2005.04.113
[25] S. Momani and Z. Odibat, “Numerical comparison of methods for solving linear differential equations of fractional order,” Chaos, Solitons & Fractals, vol. 31, no. 5, pp. 1248-1255, 2007. · Zbl 1137.65450 · doi:10.1016/j.chaos.2005.10.068
[26] M. R. Yulita, M. S. M. Noorani, and I. Hashim, “Variational iteration method for fractional heat- and wave-like equations,” Nonlinear Analysis: Real World Applications, vol. 10, no. 3, pp. 1854-1869, 2009. · Zbl 1172.35302 · doi:10.1016/j.nonrwa.2008.02.026
[27] A. Ashyralyev, F. Dal, and Z. Pinar, “On the numerical solution of fractional hyperbolic partial differential equations,” Mathematical Problems in Engineering, vol. 2009, Article ID 730465, 11 pages, 2009. · Zbl 1184.65083 · doi:10.1155/2009/730465 · eudml:45895
[28] A. A. Samarskii and E. S. Nikolaev, Numerical Methods for Grid Equations. Vol. II. Iterative Methods, Birkhäuser, Basel, Switzerland, 1989.
[29] M. Inokvti, H. Sekine, and T. Mura, “General use of the Lagrange multiplier in nonlinear mathematical physics,” in Variational Method in the Mechanics of Solids, S. Nemar-Nasser, Ed., Pergamon Press, Oxford, UK, 1978.
[30] A. Ashyralyev and P. E. Sobolevskii, “A note on the difference schemes for hyperbolic equations,” Abstract and Applied Analysis, vol. 6, no. 2, pp. 63-70, 2001. · Zbl 1007.65064 · doi:10.1155/S1085337501000501 · eudml:49844
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.