×

Consistent interactions of dual linearized gravity in \(D=5\): couplings with a topological BF model. (English) Zbl 1189.81193

Summary: Under some plausible assumptions, we find that the dual formulation of linearized gravity in \(D=5\) can be nontrivially coupled to the topological BF model in such a way that the interacting theory exhibits a deformed gauge algebra and some deformed, on-shell reducibility relations. Moreover, the tensor field with the mixed symmetry (2,1) gains some shift gauge transformations with parameters from the BF sector.

MSC:

81T45 Topological field theories in quantum mechanics
83E15 Kaluza-Klein and other higher-dimensional theories
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] D. Birmingham, M. Blau, M. Rakowski, G. Thompson, Topological field theory. Phys. Rep. 209, 129–340 (1991) · doi:10.1016/0370-1573(91)90117-5
[2] J.M.F. Labastida, C. Lozano, Lectures on topological quantum field theory, in Proceedings of La Plata-CERN-Santiago de Compostela Meeting on Trends in Theoretical Physics, La Plata, Argentina, April–May 1997, ed. by H. Falomir, R.E. Gamboa Saraví, F.A. Schaposnik. AIP Conference Proceedings, vol. 419 (AIP, New York, 1998), pp. 54–93. arXiv:hep-th/9709192
[3] P. Schaller, T. Strobl, Poisson structure induced (topological) field theories. Mod. Phys. Lett. A 9, 3129–3136 (1994). arXiv:hep-th/9405110 · Zbl 1015.81574 · doi:10.1142/S0217732394002951
[4] N. Ikeda, Two-dimensional gravity and nonlinear gauge theory. Ann. Phys. 235, 435–464 (1994). arXiv:hep-th/9312059 · Zbl 0807.53070 · doi:10.1006/aphy.1994.1104
[5] A.Yu. Alekseev, P. Schaller, T. Strobl, Topological G/G WZW model in the generalized momentum representation. Phys. Rev. D 52, 7146–7160 (1995). arXiv:hep-th/9505012 · doi:10.1103/PhysRevD.52.7146
[6] T. Klösch, T. Strobl, Classical and quantum gravity in 1+1 dimensions: I. A unifying approach. Class. Quantum Gravity 13, 965–983 (1996). arXiv:gr-qc/9508020 ; Erratum-ibid. 14, 825 (1997) · Zbl 0851.53054 · doi:10.1088/0264-9381/13/5/015
[7] T. Klösch, T. Strobl, Classical and quantum gravity in 1+1 dimensions. II: The universal coverings. Class. Quantum Gravity 13, 2395–2421 (1996). arXiv:gr-qc/9511081 · Zbl 0859.53056 · doi:10.1088/0264-9381/13/9/007
[8] T. Klösch, T. Strobl, Classical and quantum gravity in 1+1 dimensions: III. Solutions of arbitrary topology. Class. Quantum Gravity 14, 1689–1723 (1997). arXiv:hep-th/9607226 · Zbl 0884.53071 · doi:10.1088/0264-9381/14/7/009
[9] A.S. Cattaneo, G. Felder, A path integral approach to the Kontsevich quantization formula. Commun. Math. Phys. 212, 591–611 (2000). arXiv:math/9902090 · Zbl 1038.53088 · doi:10.1007/s002200000229
[10] A.S. Cattaneo, G. Felder, Poisson sigma models and deformation quantization. Mod. Phys. Lett. A 16, 179–189 (2001). arXiv:hep-th/0102208 · Zbl 1058.81034 · doi:10.1142/S0217732301003255
[11] C. Teitelboim, Gravitation and Hamiltonian structure in two spacetime dimensions. Phys. Lett. B 126, 41–45 (1983) · doi:10.1016/0370-2693(83)90012-6
[12] R. Jackiw, Lower dimensional gravity. Nucl. Phys. B 252, 343–356 (1985) · doi:10.1016/0550-3213(85)90448-1
[13] M.O. Katanayev, I.V. Volovich, String model with dynamical geometry and torsion. Phys. Lett. B 175, 413–416 (1986). arXiv:hep-th/0209014 · doi:10.1016/0370-2693(86)90615-5
[14] J. Brown, Lower Dimensional Gravity (World Scientific, Singapore 1988)
[15] M.O. Katanaev, I.V. Volovich, Two-dimensional gravity with dynamical torsion and strings. Ann. Phys. 197, 1–32 (1990) · Zbl 0875.53030 · doi:10.1016/0003-4916(90)90200-8
[16] H.-J. Schmidt, Scale-invariant gravity in two dimensions. J. Math. Phys. 32, 1562–1566 (1991) · Zbl 0733.53037 · doi:10.1063/1.529267
[17] S.N. Solodukhin, Topological 2D Riemann–Cartan–Weyl gravity. Class. Quantum Gravity 10, 1011–1021 (1993) · doi:10.1088/0264-9381/10/5/018
[18] N. Ikeda, K.I. Izawa, General form of dilaton gravity and nonlinear gauge theory. Prog. Theor. Phys. 90, 237–245 (1993). arXiv:hep-th/9304012 · doi:10.1143/PTP.90.237
[19] T. Strobl, Dirac quantization of gravity-Yang-Mills systems in 1+1 dimensions. Phys. Rev. D 50, 7346–7350 (1994). arXiv:hep-th/9403121 · doi:10.1103/PhysRevD.50.7346
[20] D. Grumiller, W. Kummer, D.V. Vassilevich, Dilaton gravity in two dimensions. Phys. Rep. 369, 327–430 (2002). arXiv:hep-th/0204253 · Zbl 0998.83038 · doi:10.1016/S0370-1573(02)00267-3
[21] T. Strobl, Gravity in two space-time dimensions. Habilitation thesis RWTH Aachen, May 1999. arXiv:hep-th/0011240
[22] K. Ezawa, Ashtekar’s formulation for N=1, 2 supergravities as ”constrained” BF theories. Prog. Theor. Phys. 95, 863–882 (1996). arXiv:hep-th/9511047 · doi:10.1143/PTP.95.863
[23] L. Freidel, K. Krasnov, R. Puzio, BF description of higher-dimensional gravity theories. Adv. Theor. Math. Phys. 3, 1289–1324 (1999). arXiv:hep-th/9901069 · Zbl 0997.83020
[24] L. Smolin, Holographic formulation of quantum general relativity. Phys. Rev. D 61, 084007 (2000). arXiv:hep-th/9808191 · doi:10.1103/PhysRevD.61.084007
[25] Y. Ling, L. Smolin, Holographic formulation of quantum supergravity. Phys. Rev. D 63, 064010 (2001). arXiv:hep-th/0009018 · Zbl 0989.83056 · doi:10.1103/PhysRevD.63.064010
[26] K.-I. Izawa, On nonlinear gauge theory from a deformation theory perspective. Prog. Theor. Phys. 103, 225–228 (2000). arXiv:hep-th/9910133 · doi:10.1143/PTP.103.225
[27] C. Bizdadea, Note on two-dimensional nonlinear gauge theories. Mod. Phys. Lett. A 15, 2047–2055 (2000). arXiv:hep-th/0201059 · Zbl 0973.81121 · doi:10.1142/S0217732300002607
[28] N. Ikeda, A deformation of three dimensional BF theory. J. High Energy Phys. 11, 009 (2000). arXiv:hep-th/0010096 · Zbl 0990.81739 · doi:10.1088/1126-6708/2000/11/009
[29] N. Ikeda, Deformation of BF theories, topological open membrane and a generalization of the star deformation. J. High Energy Phys. 07, 037 (2001). arXiv:hep-th/0105286 · doi:10.1088/1126-6708/2001/07/037
[30] C. Bizdadea, E.M. Cioroianu, S.O. Saliu, Hamiltonian cohomological derivation of four-dimensional nonlinear gauge theories. Int. J. Mod. Phys. A 17, 2191–2210 (2002). arXiv:hep-th/0206186 · Zbl 1013.81037 · doi:10.1142/S0217751X02006171
[31] C. Bizdadea, C.C. Ciobîrcă, E.M. Cioroianu, S.O. Saliu, S.C. Săraru, Hamiltonian BRST deformation of a class of n-dimensional BF-type theories. J. High Energy Phys. 01, 049 (2003). arXiv:hep-th/0302037 · Zbl 1226.81277 · doi:10.1088/1126-6708/2003/01/049
[32] E.M. Cioroianu, S.C. Săraru, Self-interactions in a topological BF-type model in D=5. J. High Energy Phys. 07, 056 (2005). arXiv:hep-th/0508035 · doi:10.1088/1126-6708/2005/07/056
[33] E.M. Cioroianu, S.C. Săraru, PT-symmetry breaking Hamiltonian interactions in BF models. Int. J. Mod. Phys. A 21, 2573–2599 (2006). arXiv:hep-th/0606164 · Zbl 1098.81046 · doi:10.1142/S0217751X06029089
[34] N. Ikeda, Chern–Simons gauge theory coupled with BF theory. Int. J. Mod. Phys. A 18, 2689–2702 (2003). arXiv:hep-th/0203043 · Zbl 1037.81069 · doi:10.1142/S0217751X03015155
[35] E.M. Cioroianu, S.C. Săraru, Two-dimensional interactions between a BF-type theory and a collection of vector fields. Int. J. Mod. Phys. A 19, 4101–4125 (2004). arXiv:hep-th/0501056 · Zbl 1067.81121 · doi:10.1142/S0217751X04019470
[36] C. Bizdadea, E.M. Cioroianu, S.O. Saliu, S.C. Săraru, Couplings of a collection of BF models to matter theories. Eur. Phys. J. C 41, 401–420 (2005). arXiv:hep-th/0508037 · Zbl 1191.81194 · doi:10.1140/epjc/s2005-02224-y
[37] C. Bizdadea, E.M. Cioroianu, I. Negru, S.O. Saliu, S.C. Săraru, On the generalized Freedman-Townsend model. J. High Energy Phys. 10, 004 (2006). arXiv:0704.3407 [hep-th] · doi:10.1088/1126-6708/2006/10/004
[38] C. Bizdadea, E.M. Cioroianu, S.O. Saliu, S.C. Săraru, M. Iordache, Four-dimensional couplings among BF and massless Rarita–Schwinger theories: a BRST cohomological approach. Eur. Phys. J. C 58, 123–149 (2008). arXiv:0812.3810 [hep-th] · Zbl 1189.81206 · doi:10.1140/epjc/s10052-008-0720-5
[39] G. Barnich, M. Henneaux, Consistent couplings between fields with a gauge freedom and deformations of the master equation. Phys. Lett. B 311, 123–129 (1993). arXiv:hep-th/9304057 · doi:10.1016/0370-2693(93)90544-R
[40] M. Henneaux, Consistent interactions between gauge fields: the cohomological approach. Contemp. Math. 219, 93 (1998). arXiv:hep-th/9712226 · Zbl 0921.53044
[41] C. Bizdadea, Consistent interactions in the Hamiltonian BRST formalism. Acta Phys. Pol. B 32, 2843–2862 (2001). arXiv:hep-th/0003199
[42] G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in the antifield formalism: I. General theorems. Commun. Math. Phys. 174, 57–91 (1995). arXiv:hep-th/9405109 · Zbl 0844.53059 · doi:10.1007/BF02099464
[43] G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in the antifield formalism: II. Application to Yang-Mills theory. Commun. Math. Phys. 174, 93–116 (1995). arXiv:hep-th/9405194 · Zbl 0844.53060 · doi:10.1007/BF02099465
[44] G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in gauge theories. Phys. Rep. 338, 439–569 (2000). arXiv:hep-th/0002245 · Zbl 1097.81571 · doi:10.1016/S0370-1573(00)00049-1
[45] N. Ikeda, Topological field theories and geometry of Batalin-Vilkovisky algebras. J. High Energy Phys. 10, 076 (2002). arXiv:hep-th/0209042 · doi:10.1088/1126-6708/2002/10/076
[46] N. Ikeda, K.-I. Izawa, Dimensional reduction of nonlinear gauge theories J. High Energy Phys. 09, 030 (2004). arXiv:hep-th/0407243 · doi:10.1088/1126-6708/2004/09/030
[47] T. Curtright, P.G.O. Freund, Massive dual fields. Nucl. Phys. B 172, 413–424 (1980) · doi:10.1016/0550-3213(80)90174-1
[48] T. Curtright, Generalized gauge fields. Phys. Lett. B 165, 304–308 (1985) · doi:10.1016/0370-2693(85)91235-3
[49] C.S. Aulakh, I.G. Koh, S. Ouvry, Higher spin fields with mixed symmetry. Phys. Lett. B 173, 284–288 (1986) · doi:10.1016/0370-2693(86)90518-6
[50] J.M. Labastida, T.R. Morris, Massless mixed-symmetry bosonic free fields. Phys. Lett. B 180, 101–106 (1986) · doi:10.1016/0370-2693(86)90143-7
[51] J.M. Labastida, Massless particles in arbitrary representations of the Lorentz group. Nucl. Phys. B 322, 185–209 (1989) · doi:10.1016/0550-3213(89)90490-2
[52] C. Burdik, A. Pashnev, M. Tsulaia, On the mixed symmetry irreducible representations of the Poincaré group in the BRST approach. Mod. Phys. Lett. A 16, 731–746 (2001). arXiv:hep-th/0101201 · Zbl 1138.81433 · doi:10.1142/S0217732301003826
[53] Yu.M. Zinoviev, On massive mixed symmetry tensor fields in Minkowski space and (A)dS. arXiv:hep-th/0211233
[54] C.M. Hull, Duality in gravity and higher spin gauge fields. J. High Energy Phys. 09, 027 (2001). arXiv:hep-th/0107149 · doi:10.1088/1126-6708/2001/09/027
[55] X. Bekaert, N. Boulanger, Massless spin-two field S-duality. Class. Quantum Gravity 20, S417–S423 (2003). arXiv:hep-th/0212131 · Zbl 1035.81063 · doi:10.1088/0264-9381/20/12/306
[56] X. Bekaert, N. Boulanger, On geometric equations and duality for free higher spins. Phys. Lett. B 561, 183–190 (2003). arXiv:hep-th/0301243 · Zbl 1094.81523 · doi:10.1016/S0370-2693(03)00409-X
[57] H. Casini, R. Montemayor, L.F. Urrutia, Duality for symmetric second rank tensors. II. The linearized gravitational field. Phys. Rev. D 68, 065011 (2003). arXiv:hep-th/0304228 · doi:10.1103/PhysRevD.68.065011
[58] N. Boulanger, S. Cnockaert, M. Henneaux, A note on spin-s duality. J. High Energy Phys. 06, 060 (2003). arXiv:hep-th/0306023 · doi:10.1088/1126-6708/2003/06/060
[59] P. de Medeiros, C. Hull, Exotic tensor gauge theory and duality. Commun. Math. Phys. 235, 255–273 (2003). arXiv:hep-th/0208155 · Zbl 1025.81030 · doi:10.1007/s00220-003-0810-z
[60] X. Bekaert, N. Boulanger, Tensor gauge fields in arbitrary representations of GL(D,\(\mathbb{R}\)). Duality and Poincaré Lemma. Commun. Math. Phys. 245, 27–67 (2004). arXiv:hep-th/0208058 · Zbl 1074.81052 · doi:10.1007/s00220-003-0995-1
[61] X. Bekaert, N. Boulanger, Tensor gauge fields in arbitrary representations of GL(D,\(\mathbb{R}\)): II. Quadratic actions. Commun. Math. Phys. 271, 723–773 (2007). arXiv:hep-th/0606198 · Zbl 1122.81061 · doi:10.1007/s00220-006-0187-x
[62] X. Bekaert, N. Boulanger, M. Henneaux, Consistent deformations of dual formulations of linearized gravity: A no-go result. Phys. Rev. D 67, 044010 (2003). arXiv:hep-th/0210278 · doi:10.1103/PhysRevD.67.044010
[63] Yu.M. Zinoviev, First order formalism for mixed symmetry tensor fields. arXiv:hep-th/0304067
[64] Yu.M. Zinoviev, First order formalism for massive mixed symmetry tensor fields in Minkowski and (A)dS spaces. arXiv:hep-th/0306292
[65] N. Boulanger, L. Gualtieri, An exotic theory of massless spin-2 fields in three dimensions. Class. Quantum Gravity 18, 1485–1502 (2001). arXiv:hep-th/0012003 · Zbl 0981.83038 · doi:10.1088/0264-9381/18/8/306
[66] S.C. Anco, Parity violating spin-two gauge theories. Phys. Rev. D 67, 124007 (2003). arXiv:gr-qc/0305026 · doi:10.1103/PhysRevD.67.124007
[67] A.K. Bengtsson, I. Bengtsson, L. Brink, Cubic interaction terms for arbitrary spin. Nucl. Phys. B 227, 31–40 (1983) · doi:10.1016/0550-3213(83)90140-2
[68] M.A. Vasiliev, Cubic interactions of bosonic higher spin gauge fields in AdS 5. Nucl. Phys. B 616, 106–162 (2001). arXiv:hep-th/0106200 ; Erratum-ibid. B 652, 407 (2003) · Zbl 0988.81071 · doi:10.1016/S0550-3213(01)00433-3
[69] E. Sezgin, P. Sundell, 7D bosonic higher spin gauge theory: symmetry algebra and linearized constraints. Nucl. Phys. B 634, 120–140 (2002). arXiv:hep-th/0112100 · Zbl 0995.81059 · doi:10.1016/S0550-3213(02)00299-7
[70] D. Francia, A. Sagnotti, Free geometric equations for higher spins. Phys. Lett. B 543, 303–310 (2002). arXiv:hep-th/0207002 · Zbl 0997.81072 · doi:10.1016/S0370-2693(02)02449-8
[71] C. Bizdadea, C.C. Ciobîrcă, E.M. Cioroianu, I. Negru, S.O. Saliu, S.C. Săraru, Interactions of a single massless tensor field with the mixed symmetry (3,1). No-go results. J. High Energy Phys. 10, 019 (2003) · doi:10.1088/1126-6708/2003/10/019
[72] N. Boulanger, S. Cnockaert, Consistent deformations of [p,p]-type gauge field theories. J. High Energy Phys. 03, 031 (2004). arXiv:hep-th/0402180 · doi:10.1088/1126-6708/2004/03/031
[73] C.C. Ciobîrcă, E.M. Cioroianu, S.O. Saliu, Cohomological BRST aspects of the massless tensor field with the mixed symmetry (k,k). Int. J. Mod. Phys. A 19, 4579–4619 (2004). arXiv:hep-th/0403017 · Zbl 1067.81120 · doi:10.1142/S0217751X04018488
[74] C. Bizdadea, C.C. Ciobîrcă, E.M. Cioroianu, S.O. Saliu, S.C. Săraru, Interactions of a massless tensor field with the mixed symmetry of the Riemann tensor. No-go results. Eur. Phys. J. C 36, 253–270 (2004). arXiv:hep-th/0306154 · Zbl 1191.81193 · doi:10.1140/epjc/s2004-01888-y
[75] X. Bekaert, N. Boulanger, S. Cnockaert, No self-interaction for two-column massless fields. J. Math. Phys. 46, 012303 (2005). arXiv:hep-th/0407102 · Zbl 1076.81039 · doi:10.1063/1.1823032
[76] N. Boulanger, S. Leclercq, S. Cnockaert, Parity-violating vertices for spin-3 gauge fields. Phys. Rev. D 73, 065019 (2006). arXiv:hep-th/0509118 · Zbl 1090.81039 · doi:10.1103/PhysRevD.73.065019
[77] X. Bekaert, N. Boulanger, S. Cnockaert, Spin three gauge theory revisited. J. High Energy Phys. 01, 052 (2006). arXiv:hep-th/0508048 · Zbl 1090.81039 · doi:10.1088/1126-6708/2006/01/052
[78] C. Bizdadea, C.C. Ciobîrcă, I. Negru, S.O. Saliu, Couplings between a single massless tensor field with the mixed symmetry (3,1) and one vector field. Phys.Rev. D 74, 045031 (2006). arXiv:0705.1048 [hep-th] · doi:10.1103/PhysRevD.74.045031
[79] C. Bizdadea, C.C. Ciobîrcă, E.M. Cioroianu, S.O. Saliu, Interactions between a massless tensor field with the mixed symmetry of the Riemann tensor and a massless vector field. J. Phys. A: Math. Gen. 39, 10549–10564 (2006). arXiv:0705.1054 [hep-th] · Zbl 1114.81078 · doi:10.1088/0305-4470/39/33/021
[80] C. Bizdadea, D. Cornea, S.O. Saliu, No cross-interactions among different tensor fields with the mixed symmetry (3, 1) intermediated by a vector field. J. Phys. A: Math. Theor. 41, 285202 (2008). arXiv:0901.4059 [hep-th] · Zbl 1194.83065 · doi:10.1088/1751-8113/41/28/285202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.