×

zbMATH — the first resource for mathematics

Turbulent drag reduction and multistage transitions in viscoelastic minimal flow units. (English) Zbl 1189.76326
Summary: The observation that addition of a minute amount of flexible polymers to fluid reduces turbulent friction drag is well known. However, many aspects of this drag reduction phenomenon are not well understood; in particular, the origin of the maximum drag reduction (MDR) asymptote, a universal upper limit on drag reduction by polymers, remains an open question. This study focuses on the drag reduction phenomenon in the plane Poiseuille geometry in a parameter regime close to the laminar-turbulent transition. By minimizing the size of the periodic simulation box to the lower limit for which turbulence persists, the essential self-sustaining turbulent motions are isolated. In these ‘minimal flow unit’ (MFU) solutions, a series of qualitatively different stages consistent with previous experiments is observed, including an MDR stage where the mean flow rate is found to be invariant with respect to changing polymer-related parameters. Before the MDR stage, an additional transition exists between a relatively low degree (LDR) and a high degree (HDR) of drag reduction. This transition occurs at about 13%-15% of drag reduction and is characterized by a sudden increase in the minimal box size, as well as many qualitative changes in flow statistics. The observation of LDR-HDR transition at less than 15% drag reduction shows for the first time that it is a qualitative transition instead of a quantitative effect of the amount of drag reduction. Spatio-temporal flow structures change substantially upon this transition, suggesting that two distinct types of self-sustaining turbulent dynamics are observed. In LDR, as in Newtonian turbulence, the self-sustaining process involves one low-speed streak and its surrounding streamwise vortices; after the LDR-HDR transition, multiple streaks are present in the self-sustaining structure and complex intermittent behaviour of the streaks is observed. This multistage scenario of LDR-HDR-MDR recovers all key transitions commonly observed and studied at much higher Reynolds numbers.

MSC:
76F70 Control of turbulent flows
76A10 Viscoelastic fluids
Software:
channelflow
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1103/PhysRevLett.98.014501
[2] DOI: 10.1146/annurev.fl.23.010191.003125
[3] DOI: 10.1007/s00348-003-0630-0
[4] DOI: 10.1103/PhysRevLett.100.134504
[5] DOI: 10.1146/annurev.fluid.40.111406.102156 · Zbl 1229.76043
[6] DOI: 10.1017/S0022112007006301 · Zbl 1123.76022
[7] DOI: 10.1007/s003480050371
[8] DOI: 10.1017/S0022112099005066 · Zbl 0948.76025
[9] DOI: 10.1063/1.1566753 · Zbl 1186.76556
[10] DOI: 10.1017/S0022112091002033 · Zbl 0721.76040
[11] DOI: 10.1017/S0022112001004189 · Zbl 0987.76034
[12] DOI: 10.1063/1.1825451 · Zbl 1187.76248
[13] DOI: 10.1103/PhysRevLett.81.4140
[14] DOI: 10.1017/S0022112095000462 · Zbl 0847.76007
[15] DOI: 10.1063/1.869185
[16] DOI: 10.1063/1.1850920 · Zbl 1187.76219
[17] DOI: 10.1017/S0022112007005459 · Zbl 1175.76074
[18] DOI: 10.1002/aic.690210402
[19] DOI: 10.1063/1.1589484 · Zbl 1186.76235
[20] DOI: 10.1017/CBO9780511622700
[21] DOI: 10.1063/1.861757
[22] DOI: 10.1038/nature05089
[23] DOI: 10.1126/science.1100393
[24] DOI: 10.1063/1.869229
[25] DOI: 10.1017/S0022112095000978 · Zbl 0867.76032
[26] DOI: 10.1103/PhysRevLett.89.208301
[27] DOI: 10.1063/1.1775192 · Zbl 1187.76502
[28] DOI: 10.1017/S0022112003005305 · Zbl 1063.76580
[29] DOI: 10.1103/RevModPhys.80.225
[30] DOI: 10.1007/s10494-005-9002-6 · Zbl 1200.76106
[31] DOI: 10.1103/PhysRevLett.99.074502
[32] DOI: 10.1088/1468-5248/1/1/011 · Zbl 1082.76554
[33] DOI: 10.1016/S0377-0257(98)00115-3 · Zbl 0960.76057
[34] Pope, Turbulent Flows. (2000) · Zbl 0966.76002
[35] DOI: 10.1016/S0045-7930(01)00069-X · Zbl 1075.76556
[36] Peyret, Spectral Methods for Incompressible Viscous Flow. (2002) · Zbl 1005.76001
[37] DOI: 10.1103/PhysRevE.67.056312
[38] DOI: 10.1063/1.861722
[39] DOI: 10.1017/S0022112082002006
[40] DOI: 10.1017/S0022112003004610 · Zbl 1054.76041
[41] Canuto, Spectral Methods in Fluid Dynamics. (1988)
[42] DOI: 10.1017/S0022112003005597 · Zbl 1063.76579
[43] Bird, Dynamics of Polymeric Liquids (1987)
[44] DOI: 10.1017/S0022112006002138 · Zbl 1177.76169
[45] DOI: 10.1017/S0022112005007950 · Zbl 1085.76004
[46] DOI: 10.1007/1-4020-4049-0_16
[47] DOI: 10.1016/0168-9274(91)90102-6 · Zbl 0708.76071
[48] DOI: 10.1063/1.1863284 · Zbl 1187.76570
[49] DOI: 10.1063/1.2748443 · Zbl 1182.76452
[50] DOI: 10.1016/j.jnnfm.2005.12.012 · Zbl 1143.76337
[51] DOI: 10.1017/S002211200800267X · Zbl 1151.76453
[52] DOI: 10.1063/1.1563258 · Zbl 1186.76502
[53] DOI: 10.1063/1.457480
[54] DOI: 10.1017/S0022112099007818 · Zbl 0959.76005
[55] DOI: 10.1103/PhysRevLett.91.224502
[56] DOI: 10.1017/S0022112083000634
[57] DOI: 10.1017/S0022112004000291 · Zbl 1067.76052
[58] DOI: 10.1017/S0022112088003295
[59] DOI: 10.1017/S0022112007006611 · Zbl 1175.76069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.