×

zbMATH — the first resource for mathematics

On the transient nature of localized pipe flow turbulence. (English) Zbl 1189.76262
Summary: The onset of shear flow turbulence is characterized by turbulent patches bounded by regions of laminar flow. At low Reynolds numbers localized turbulence relaminarizes, raising the question of whether it is transient in nature or becomes sustained at a critical threshold. We present extensive numerical simulations and a detailed statistical analysis of the lifetime data, in order to shed light on the sources of the discrepancies present in the literature. The results are in excellent quantitative agreement with recent experiments and show that turbulent lifetimes increase super-exponentially with Reynolds number. In addition, we provide evidence for a lower bound below which there are no meta-stable characteristics of the transients, i.e. the relaminarization process is no longer memoryless.

MSC:
76F10 Shear flows and turbulence
76F06 Transition to turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112073001576 · doi:10.1017/S0022112073001576
[2] DOI: 10.1063/1.857726 · Zbl 0703.76028 · doi:10.1063/1.857726
[3] DOI: 10.1103/PhysRevLett.98.014501 · doi:10.1103/PhysRevLett.98.014501
[4] DOI: 10.1017/S0022112004009346 · Zbl 1065.76072 · doi:10.1017/S0022112004009346
[5] DOI: 10.1098/rsta.2008.0199 · Zbl 1221.76009 · doi:10.1098/rsta.2008.0199
[6] Lawless, Statistical Models and Methods for Lifetime Data (2003)
[7] DOI: 10.1017/S0022112007006301 · Zbl 1123.76022 · doi:10.1017/S0022112007006301
[8] Kerswell, Nonlinearity (London) 18 pp R17– (2005) · Zbl 1084.76033 · doi:10.1088/0951-7715/18/6/R01
[9] DOI: 10.1038/nature05089 · doi:10.1038/nature05089
[10] DOI: 10.1103/PhysRevLett.91.224502 · doi:10.1103/PhysRevLett.91.224502
[11] DOI: 10.1103/PhysRevLett.101.214501 · doi:10.1103/PhysRevLett.101.214501
[12] DOI: 10.1146/annurev.fluid.39.050905.110308 · doi:10.1146/annurev.fluid.39.050905.110308
[13] DOI: 10.1103/PhysRevLett.91.244502 · doi:10.1103/PhysRevLett.91.244502
[14] Eckhardt, Nonlinearity (London) 21 pp T1– (2008) · Zbl 1139.76024 · doi:10.1088/0951-7715/21/1/T01
[15] DOI: 10.1126/science.1100393 · doi:10.1126/science.1100393
[16] DOI: 10.1063/1.3009874 · Zbl 1182.76222 · doi:10.1063/1.3009874
[17] DOI: 10.1103/RevModPhys.72.603 · doi:10.1103/RevModPhys.72.603
[18] DOI: 10.1017/S0022112095001248 · doi:10.1017/S0022112095001248
[19] DOI: 10.1017/S0022112004008134 · Zbl 1116.76362 · doi:10.1017/S0022112004008134
[20] DOI: 10.1007/BF01041090 · doi:10.1007/BF01041090
[21] DOI: 10.1209/epl/i1998-00336-3 · doi:10.1209/epl/i1998-00336-3
[22] DOI: 10.1007/s100510050536 · doi:10.1007/s100510050536
[23] DOI: 10.1016/j.physrep.2008.01.001 · doi:10.1016/j.physrep.2008.01.001
[24] DOI: 10.1103/PhysRevLett.92.095301 · doi:10.1103/PhysRevLett.92.095301
[25] DOI: 10.1103/PhysRevE.78.046310 · doi:10.1103/PhysRevE.78.046310
[26] DOI: 10.1098/rspl.1883.0018 · doi:10.1098/rspl.1883.0018
[27] DOI: 10.1103/PhysRevLett.99.074502 · doi:10.1103/PhysRevLett.99.074502
[28] Pfenniger, Boundary Layer and Flow Control pp 970– (1961)
[29] DOI: 10.1017/S0022112007006398 · Zbl 1114.76304 · doi:10.1017/S0022112007006398
[30] DOI: 10.1103/PhysRevLett.96.094501 · doi:10.1103/PhysRevLett.96.094501
[31] DOI: 10.1098/rsta.2008.0165 · Zbl 1221.76096 · doi:10.1098/rsta.2008.0165
[32] DOI: 10.1017/S0022112008004618 · Zbl 1156.76395 · doi:10.1017/S0022112008004618
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.