×

zbMATH — the first resource for mathematics

Global three-dimensional optimal disturbances in the Blasius boundary-layer flow using time-steppers. (English) Zbl 1189.76192
Summary: The global linear stability of the flat-plate boundary-layer flow to three-dimensional disturbances is studied by means of an optimization technique. We consider both the optimal initial condition leading to the largest growth at finite times and the optimal time-periodic forcing leading to the largest asymptotic response. Both optimization problems are solved using a Lagrange multiplier technique, where the objective function is the kinetic energy of the flow perturbations and the constraints involve the linearized Navier-Stokes equations. The approach proposed here is particularly suited to examine convectively unstable flows, where single global eigenmodes of the system do not capture the downstream growth of the disturbances. In addition, the use of matrix-free methods enables us to extend the present framework to any geometrical configuration. The optimal initial condition for spanwise wavelengths of the order of the boundary-layer thickness are finite-length streamwise vortices exploiting the lift-up mechanism to create streaks. For long spanwise wavelengths, it is the Orr mechanism combined with the amplification of oblique wave packets that is responsible for the disturbance growth. This mechanism is dominant for the long computational domain and thus for the relatively high Reynolds number considered here. Three-dimensional localized optimal initial conditions are also computed and the corresponding wave packets examined. For short optimization times, the optimal disturbances consist of streaky structures propagating and elongating in the downstream direction without significant spreading in the lateral direction. For long optimization times, we find the optimal disturbances with the largest energy amplification. These are wave packets of Tollmien-Schlichting waves with low streamwise propagation speed and faster spreading in the spanwise direction. The pseudo-spectrum of the system for real frequencies is also computed with matrix-free methods. The spatial structure of the optimal forcing is similar to that of the optimal initial condition, and the largest response to forcing is also associated with the Orr/oblique wave mechanism, however less so than in the case of the optimal initial condition. The lift-up mechanism is most efficient at zero frequency and degrades slowly for increasing frequencies. The response to localized upstream forcing is also discussed.

MSC:
76E05 Parallel shear flows in hydrodynamic stability
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
Software:
SIMSON
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Orr, Proc. R. Irish Acad. A 27 pp 9– (1907)
[2] Schmid, Stability and Transition in Shear Flows (2001) · Zbl 0966.76003 · doi:10.1007/978-1-4613-0185-1
[3] DOI: 10.1137/S1064827596310251 · Zbl 0930.35015 · doi:10.1137/S1064827596310251
[4] DOI: 10.1002/fld.1824 · Zbl 1144.76044 · doi:10.1002/fld.1824
[5] DOI: 10.1017/S0022112008004394 · Zbl 1156.76374 · doi:10.1017/S0022112008004394
[6] DOI: 10.1006/jcph.1993.1158 · Zbl 0779.65025 · doi:10.1006/jcph.1993.1158
[7] DOI: 10.2514/1.41365 · doi:10.2514/1.41365
[8] DOI: 10.1017/S0022112008000323 · Zbl 1191.76053 · doi:10.1017/S0022112008000323
[9] DOI: 10.1017/S0022112000002421 · Zbl 0983.76025 · doi:10.1017/S0022112000002421
[10] DOI: 10.1017/S0022112008004023 · Zbl 1165.76337 · doi:10.1017/S0022112008004023
[11] DOI: 10.1063/1.869908 · Zbl 1147.76308 · doi:10.1063/1.869908
[12] DOI: 10.1017/S0022112087003070 · Zbl 0645.76118 · doi:10.1017/S0022112087003070
[13] DOI: 10.1063/1.3153908 · Zbl 1183.76070 · doi:10.1063/1.3153908
[14] DOI: 10.1017/S0022112087003069 · Zbl 0645.76117 · doi:10.1017/S0022112087003069
[15] DOI: 10.1017/S0022112007005496 · Zbl 1175.76049 · doi:10.1017/S0022112007005496
[16] DOI: 10.1017/S0022112093003738 · Zbl 0789.76026 · doi:10.1017/S0022112093003738
[17] DOI: 10.1063/1.868730 · Zbl 0836.76033 · doi:10.1063/1.868730
[18] DOI: 10.1016/j.euromechflu.2007.09.004 · Zbl 1147.76025 · doi:10.1016/j.euromechflu.2007.09.004
[19] DOI: 10.1063/1.1683170 · Zbl 1186.76340 · doi:10.1063/1.1683170
[20] DOI: 10.1017/S0022112099007259 · Zbl 0959.76022 · doi:10.1017/S0022112099007259
[21] DOI: 10.1023/B:APPL.0000004918.05683.46 · Zbl 1113.76321 · doi:10.1023/B:APPL.0000004918.05683.46
[22] DOI: 10.1017/S0022112080000122 · Zbl 0428.76049 · doi:10.1017/S0022112080000122
[23] DOI: 10.1017/S0022112094004234 · Zbl 0813.76024 · doi:10.1017/S0022112094004234
[24] DOI: 10.1017/S002211200100756X · Zbl 1081.76543 · doi:10.1017/S002211200100756X
[25] DOI: 10.1017/S0022112005004295 · Zbl 1074.76016 · doi:10.1017/S0022112005004295
[26] DOI: 10.1098/rspa.1975.0208 · doi:10.1098/rspa.1975.0208
[27] DOI: 10.1098/rspa.1975.0209 · doi:10.1098/rspa.1975.0209
[28] DOI: 10.1017/S0022112006002898 · Zbl 1105.76028 · doi:10.1017/S0022112006002898
[29] DOI: 10.1063/1.861156 · Zbl 0308.76030 · doi:10.1063/1.861156
[30] DOI: 10.1017/S0022112008003285 · Zbl 1158.76010 · doi:10.1017/S0022112008003285
[31] DOI: 10.1017/S0022112005005112 · Zbl 1073.76027 · doi:10.1017/S0022112005005112
[32] DOI: 10.1103/PhysRevLett.78.4387 · doi:10.1103/PhysRevLett.78.4387
[33] DOI: 10.1063/1.870287 · Zbl 1149.76349 · doi:10.1063/1.870287
[34] DOI: 10.1146/annurev.fluid.37.061903.175810 · Zbl 1117.76027 · doi:10.1146/annurev.fluid.37.061903.175810
[35] DOI: 10.1016/S0997-7546(00)00128-X · Zbl 0966.76019 · doi:10.1016/S0997-7546(00)00128-X
[36] Tuckerman, Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems pp 453– (2000) · doi:10.1007/978-1-4612-1208-9_20
[37] DOI: 10.1063/1.858386 · doi:10.1063/1.858386
[38] Trefethen, Spectra and Pseudospectra: The Behaviour of Nonnormal Matrices and Operators (2005)
[39] DOI: 10.1017/S0022112003004427 · Zbl 1055.76019 · doi:10.1017/S0022112003004427
[40] DOI: 10.1126/science.261.5121.578 · Zbl 1226.76013 · doi:10.1126/science.261.5121.578
[41] Blackburn, J. Fluid Mech. 608 pp 271– (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.