×

zbMATH — the first resource for mathematics

Simulations of three-dimensional viscoelastic flows past a circular cylinder at moderate Reynolds numbers. (English) Zbl 1189.76057
Summary: The results from a numerical investigation of inertial viscoelastic flow past a circular cylinder are presented which illustrate the significant effect that dilute concentrations of polymer additives have on complex flows. In particular, effects of polymer extensibility are studied as well as the role of viscoelasticity during three-dimensional cylinder wake transition. Simulations at two distinct Reynolds numbers (\(Re = 100\) and \(Re = 300\)) revealed dramatic differences based on the choice of the polymer extensibility \((L^{2}\) in the FENE-P model), as well as a stabilizing tendency of viscoelasticity. For the \(Re = 100\) case, attention was focused on the effects of increasing polymer extensibility, which included a lengthening of the recirculation region immediately behind the cylinder and a sharp increase in average drag when compared to both the low extensibility and Newtonian cases. For \(Re = 300\), a suppression of the three-dimensional Newtonian mode B instability was observed. This effect is more pronounced for higher polymer extensibilities where all three-dimensional structure is eliminated, and mechanisms for this stabilization are described in the context of roll-up instability inhibition in a viscoelastic shear layer.

MSC:
76A10 Viscoelastic fluids
76M12 Finite volume methods applied to problems in fluid mechanics
PDF BibTeX Cite
Full Text: DOI
References:
[1] DOI: 10.1002/aic.10465
[2] DOI: 10.1146/annurev.fl.28.010196.002401
[3] DOI: 10.1038/211169b0
[4] DOI: 10.1016/S0045-7825(99)00170-X · Zbl 0966.76056
[5] DOI: 10.1016/S0377-0257(98)00154-2 · Zbl 0956.76042
[6] DOI: 10.1252/jcej.13.77
[7] DOI: 10.1016/0300-9467(71)80001-1
[8] DOI: 10.1017/S0022112004000291 · Zbl 1067.76052
[9] DOI: 10.1007/s10494-005-9002-6 · Zbl 1200.76106
[10] DOI: 10.1016/0377-0257(80)80004-8 · Zbl 0421.76002
[11] DOI: 10.1016/S0377-0257(98)00115-3 · Zbl 0960.76057
[12] DOI: 10.1063/1.869229
[13] DOI: 10.1063/1.1829751 · Zbl 1187.76127
[14] DOI: 10.1016/0377-0257(95)01377-8
[15] DOI: 10.1017/S0022112006002321 · Zbl 1145.76027
[16] DOI: 10.1063/1.1775192 · Zbl 1187.76502
[17] DOI: 10.1016/j.jnnfm.2005.08.013 · Zbl 1195.76086
[18] DOI: 10.1063/1.1448497
[19] DOI: 10.1063/1.1347962 · Zbl 1184.76113
[20] DOI: 10.1016/j.jnnfm.2004.08.002 · Zbl 1131.76009
[21] Coelho, J. Non-Newton. Fluid Mech. 121 pp 55– (2004)
[22] DOI: 10.1016/0377-0257(96)01449-8
[23] DOI: 10.1016/S0377-0257(03)00008-9 · Zbl 1024.76504
[24] DOI: 10.1016/j.jnnfm.2006.07.003
[25] DOI: 10.1016/S0377-0257(03)00007-7 · Zbl 1024.76505
[26] DOI: 10.1016/S0045-7825(99)00168-1 · Zbl 0966.76055
[27] DOI: 10.1016/S0377-0257(98)00082-2 · Zbl 0960.76053
[28] DOI: 10.1016/S0377-0257(01)00146-X · Zbl 1098.76583
[29] DOI: 10.1002/aic.690130327
[30] DOI: 10.1016/0377-0257(92)80008-L · Zbl 0825.76451
[31] DOI: 10.1016/0300-9467(74)85015-X
[32] Chilcott, J. Non-Newton. Fluid Mech. 1988 pp 381– (1998)
[33] DOI: 10.1063/1.869864 · Zbl 1147.76347
[34] DOI: 10.1146/annurev.fluid.34.083001.125207 · Zbl 0994.76502
[35] DOI: 10.1017/S0022112000008818 · Zbl 0948.76521
[36] DOI: 10.1098/rsta.1993.0091
[37] DOI: 10.1016/0300-9467(74)80014-6
[38] DOI: 10.1016/0377-0257(81)85011-2
[39] DOI: 10.1146/annurev.fl.27.010195.001125
[40] DOI: 10.1016/j.jcp.2003.11.031 · Zbl 1059.76033
[41] Bird, Dynamics of Polymeric Liquids, Volume 1 (1987)
[42] DOI: 10.1016/S0377-0257(03)00172-1
[43] DOI: 10.1016/0377-0257(94)85029-1
[44] DOI: 10.1016/S0377-0257(97)00067-0 · Zbl 0938.76011
[45] DOI: 10.1017/S0022112094001254 · Zbl 0810.76023
[46] DOI: 10.1016/j.jnnfm.2005.12.012 · Zbl 1143.76337
[47] DOI: 10.1016/S0377-0257(98)00095-0 · Zbl 0946.76020
[48] DOI: 10.1017/S0022112007006611 · Zbl 1175.76069
[49] Kato, Bull. Japan Soc. Mech. Eng. 26 pp 529– (1983)
[50] DOI: 10.1038/225445a0
[51] James, Chem. Engng Prog. Symp. Ser. 67 pp 62– (1971)
[52] Zdravkovich, Flow Around Circular Cylinders Volume 1: Fundamentals (1997) · Zbl 0882.76004
[53] DOI: 10.1017/S0022112096008750 · Zbl 0899.76129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.