×

zbMATH — the first resource for mathematics

Flow regimes in a plane Couette flow with system rotation. (English) Zbl 1189.76047
Summary: Flow states in plane Couette flow in a spanwise rotating frame of reference have been mapped experimentally in the parameter space spanned by the Reynolds number and rotation rate. Depending on the direction of rotation, the flow is either stabilized or destabilized. The experiments were made through flow visualization in a Couette flow apparatus mounted on a rotating table, where reflected flakes are mixed with the water to visualize the flow. Both short- and long-time exposures have been used: the short-time exposure gives an instantaneous picture of the turbulent flow field, whereas the long-time exposure averages the small, rapidly varying scales and gives a clearer representation of the large scales. A correlation technique involving the light intensity of the photographs made it possible to obtain, in an objective manner, both the spanwise and streamwise wavelengths of the flow structures. During these experiments 17 different flow regimes have been identified, both laminar and turbulent with and without roll cells, as well as states that can be described as transitional, i.e. states that contain both laminar and turbulent regions at the same time. Many of these flow states seem to be similar to those observed in Taylor-Couette flow.

MSC:
76-05 Experimental work for problems pertaining to fluid mechanics
76U05 General theory of rotating fluids
76F06 Transition to turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112097008422 · Zbl 0906.76028 · doi:10.1017/S0022112097008422
[2] Nagata, Advances in Turbulence X, Proceedings of the Tenth European Turbulence Conference pp 391– (2004)
[3] DOI: 10.1017/S0022112076001171 · Zbl 0339.76033 · doi:10.1017/S0022112076001171
[4] Lee, Proceedings of Eighth Symposium on Turbulent Shear Flows pp 6– (1991)
[5] Koschmieder, BĂ©nard Cells and Taylor Vortices (1993)
[6] DOI: 10.1017/S0022112096007537 · Zbl 0875.76160 · doi:10.1017/S0022112096007537
[7] DOI: 10.1017/S0022112005005641 · Zbl 1137.76305 · doi:10.1017/S0022112005005641
[8] DOI: 10.1017/S0022112072002502 · doi:10.1017/S0022112072002502
[9] DOI: 10.1063/1.2716767 · Zbl 1146.76413 · doi:10.1063/1.2716767
[10] DOI: 10.1103/PhysRevLett.62.257 · doi:10.1103/PhysRevLett.62.257
[11] DOI: 10.1103/PhysRevE.61.7227 · doi:10.1103/PhysRevE.61.7227
[12] Drazin, Hydrodynamic Stability (1981)
[13] DOI: 10.1103/PhysRevLett.69.2511 · doi:10.1103/PhysRevLett.69.2511
[14] DOI: 10.1063/1.868631 · doi:10.1063/1.868631
[15] DOI: 10.1017/S0022112065000241 · Zbl 0134.21705 · doi:10.1017/S0022112065000241
[16] Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (1961)
[17] DOI: 10.1103/PhysRevE.75.016303 · doi:10.1103/PhysRevE.75.016303
[18] DOI: 10.1080/14685240600609866 · doi:10.1080/14685240600609866
[19] DOI: 10.1017/S0022112095000747 · doi:10.1017/S0022112095000747
[20] Tillmark, Advances in Turbulence VI, Proceedings of the Sixth European Turbulence Conference pp 391– (1996) · doi:10.1007/978-94-009-0297-8_111
[21] DOI: 10.1017/S0022112097006691 · Zbl 0910.76024 · doi:10.1017/S0022112097006691
[22] DOI: 10.1017/S0022112092001046 · doi:10.1017/S0022112092001046
[23] DOI: 10.1017/S0022112096000729 · Zbl 0875.76105 · doi:10.1017/S0022112096000729
[24] DOI: 10.1109/TVCG.2007.70610 · Zbl 05340160 · doi:10.1109/TVCG.2007.70610
[25] Tillmark, Advances in Turbulence III, Proceedings of the Third European Turbulence Conference pp 235– (1990)
[26] DOI: 10.1017/S002211200600454X · Zbl 1124.76018 · doi:10.1017/S002211200600454X
[27] DOI: 10.1098/rsta.1923.0008 · doi:10.1098/rsta.1923.0008
[28] DOI: 10.1103/PhysRevLett.94.014502 · doi:10.1103/PhysRevLett.94.014502
[29] Schmid, Stability and Transition in Shear Flows (2001) · Zbl 0966.76003 · doi:10.1007/978-1-4613-0185-1
[30] DOI: 10.1017/S0022112086002513 · doi:10.1017/S0022112086002513
[31] DOI: 10.1017/S0022112085000672 · doi:10.1017/S0022112085000672
[32] DOI: 10.1007/1-4020-4049-0_10 · doi:10.1007/1-4020-4049-0_10
[33] DOI: 10.1098/rstl.1883.0029 · JFM 16.0845.02 · doi:10.1098/rstl.1883.0029
[34] DOI: 10.1017/S002211208900128X · doi:10.1017/S002211208900128X
[35] Rayleigh, Proc. Lond. Math. Soc. 174 pp 57– (1880)
[36] DOI: 10.1103/PhysRevLett.89.014501 · doi:10.1103/PhysRevLett.89.014501
[37] DOI: 10.1007/1-4020-4049-0_11 · doi:10.1007/1-4020-4049-0_11
[38] DOI: 10.1017/S0022112091003130 · Zbl 0850.76256 · doi:10.1017/S0022112091003130
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.