×

zbMATH — the first resource for mathematics

A novel traveling wave solution for Ostrovsky equation using Exp-function method. (English) Zbl 1189.35283
Summary: We predict a new traveling wave solution of Ostrovsky equation by using He’s Exp-function method. The method is straightforward and concise and its application shows an imminent prospective for the nonlinear problems in mathematical physics.

MSC:
35Q53 KdV equations (Korteweg-de Vries equations)
35C07 Traveling wave solutions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ablowitz, M.J.; Clarkson, P.A., Solitons, nonlinear evolution equations and inverse scattering transform, (1990), Cambridge University Press Cambridge · Zbl 0762.35001
[2] Ablowitz, M.J.; Segur, H., Solitons and inverse scattering transformations, (1981), SIAM Philadelphia · Zbl 0299.35076
[3] Noviko, S.; Manakov, S.v.; Zakharov, V.E., The inverse scattering method, (1984), Consultants Bureau New York
[4] Hirota, R., Direct method of finding exact solutions of nonlinear evolution equations, (), 1157-1175
[5] Malfliet, W., Solitary wave solutions of nonlinear wave equations, Amer. J. phys., 60, 650-654, (1992) · Zbl 1219.35246
[6] Malfliet, W.; Hereman, W., The tanh method: exact solutions of nonlinear evolution and wave equations, Phys. spc., 54, 569-575, (1996) · Zbl 0942.35035
[7] Fan, E., Extended tanh-function method and its applications to nonlinear equations, Phys. lett. A, 277, 212, (2000) · Zbl 1167.35331
[8] Yusufoğlu, E.; Bekir, A., A traveling wave solution to the Ostrovsky equation, Appl. math. comput., 186, 256-260, (2007) · Zbl 1110.76010
[9] Wazwaz, A.M., The tanh and the sine-cosine methods for a reliable treatment of the modified equal width equation and its variants, Commun. nonlinear sci. numer simul., 11, 2, 148-160, (2006) · Zbl 1078.35108
[10] Wazwaz, A.M., The tanh method and the sine-cosine method for solving the KP-MEW equation, Int. J. comput. math., 82, 2, 235-246, (2005) · Zbl 1064.65119
[11] Fan, E., A note on the homogeneous balance method, Phys. lett. A, 246, 403-406, (1998) · Zbl 1125.35308
[12] Lang, M.L., Exact solutions for a compound kdv – burgers equation, Phys. lett. A, 213, 279-287, (1996) · Zbl 0972.35526
[13] Rosenau, P.; Hyman, J.M., Compactons: solitons with finite wavelengths, Phys. rev. lett., 70-75, 564-567, (1993) · Zbl 0952.35502
[14] Ostrovsky, L.A., Nonlinear internal waves in a rotating Ocean, Oceanology, 18, 119-125, (1978)
[15] Gilman, O.A.; Grimshaw, R.; Stepanyants, Yu.A., Approximate analytical and numerical solutions of the stationary Ostrovsky equation, Stud. appl. math., 95, 115-126, (1995) · Zbl 0843.76008
[16] Vakhnenko, V.O.; Parkes, E.J., The two loop soliton of the Vakhnenko equation, Nonlinearity, 11, 1457-1464, (1998) · Zbl 0914.35115
[17] Vakhnenko, V.O.; Parkes, E.J., The calculation of multi-soliton solutions of Vakhnenko equation, Chaos solitons fractals, 13, 1819-1826, (2002) · Zbl 1067.37106
[18] He, J.H., Exp-function method for nonlinear wave equations, Chaos solitons fractals, 30, 700-708, (2006) · Zbl 1141.35448
[19] X.H. Wu, J.H. He, Exp-function method and its application to nonlinear equations, Chaos Solitons Fractals, doi:10.1016/j.chaos.2007.01.024 · Zbl 1153.35384
[20] (Benn) Wu, X.H.; He, J.H., Solitary solutions periodic solutions and compact-like solutions using exp-function method, Comput. math. appl., (2007) · Zbl 1143.35360
[21] Bekir, A.; Boz, A., Exact solutions for a class of nonlinear partial differential equations, Int. J. nonlinear sci. numer. simul., 8, 4, 513-518, (2007)
[22] Bekir, A.; Boz, A., Exact solutions for nonlinear evolution equations using exp-function method, Phys. lett. A, 372, 1619-1625, (2008) · Zbl 1217.35151
[23] Öziş, T.; Köroğlu, C., A novel approach for solving the Fisher equation using exp-function method, Phys. lett. A, (2008) · Zbl 1220.83011
[24] Yusufoğlu, E., New solitary solutions for the MBBM equations using exp-function method, Phys. lett. A, 372, 442-446, (2008) · Zbl 1217.35156
[25] Ebaid, A., Exact solitary wave solutions for some nonlinear evolution equations via exp-function method, Phys. lett. A, 365, 213-219, (2007) · Zbl 1203.35213
[26] J.H. He, M.A. Abdou, New periodic solutions for nonlinear evolution equations using Exp-function method, Chaos Solitons Fractals, doi:10.1016/j.chaos.2006.05.072 · Zbl 1152.35441
[27] S. Zhang, Application of Exp-function method to high-dimensional nonlinear evolution equation, Chaos Solitons Fractals, doi:10.1016/j.chaos.2006.11.014 · Zbl 1142.35593
[28] S. Zhang, Application of Exp-function method to a KdV equation with variable coefficients, Phys. Lett. A, doi:10.1016/j.phyleta.2007.02.004 · Zbl 1203.35255
[29] S. Zhang, Exact solutions of a KdV equation with variable coefficients via Exp-function method, Nonlinear Dyn., doi:10.1007/s11071-007-9251-0 · Zbl 1173.35670
[30] S. Zhang, Exp-function method for solving Maccari’s system, Phys. Lett. A, doi:10.1016/j.phyleta.2007.05.091 · Zbl 1209.65103
[31] M.A. Abdou, A.A. Soliman, S.T. El-Basyony, New application of Exp-function method for improved Boussinesq equation, Phys. Lett. A, doi:10.1016/j.phyleta.2007.05.039 · Zbl 1209.81091
[32] S.A. Wakil, M.A. Madkour, M.A. Abdou, Application of Exp-function method for nonlinear evolution equation with variable coefficients, Phys. Lett. A, doi:10.1016/j.phyleta.2007.04.075 · Zbl 1209.81097
[33] Zhu, S.-D., Exp-function method for the hybrid-lattice system, Int. J. nonlinear sci. numer. simul., 8, 3, 461-464, (2007)
[34] Zhu, S.-D., Exp-function method for the discrete mkdv lattice, Int. J. nonlinear sci. numer. simul., 8, 3, 465-469, (2007)
[35] He, J.H.; Zhang, L.N., Generalized solitary solutions and compact-like solution of the Jaulent-Miodek equations using the exp-function method, Phys. lett. A, 372, 1044-1047, (2008) · Zbl 1217.35152
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.