×

zbMATH — the first resource for mathematics

Polarized vector bosons on the de Sitter expanding universe. (English) Zbl 1188.83043
Summary: The quantum theory of the vector field minimally coupled to the gravity of the de Sitter spacetime is built in a canonical manner starting with a new complete set of quantum modes of given momentum and helicity derived in the moving chart of conformal time. It is shown that the canonical quantization leads to new vector propagators which satisfy similar equations as the propagators derived by N. C. Tsamis and R. P. Woodard [J. Math. Phys. 48, No. 5, 052306, 14 p. (2007; Zbl 1144.81417)] but having a different structure. The one-particle operators are also written down pointing out that their properties are similar with those found already in the quantum theory of the scalar, Dirac and Maxwell free fields.

MSC:
83C47 Methods of quantum field theory in general relativity and gravitational theory
81S40 Path integrals in quantum mechanics
83F05 Relativistic cosmology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Birrel N.D., Davies P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)
[2] Wald R.M.: General Relativity. University of Chicago Press, Chicago and London (1984) · Zbl 0549.53001
[3] Higuchi A.: Class. Quantum Gravit. 4, 712 (1987)
[4] Bini, D., Esposito G., Montaquila, R.V.: arXiv:0812.1973
[5] Chernikov N.A., Tagirov E.A.: Ann. Inst H. Poincaré IX, 1147 (1968)
[6] Candelas P., Raine D.J.: Phys. Rev. D 12, 965 (1975)
[7] Dowker J.S., Critchely J.S.: Phys. Rev. D 13, 224 (1976)
[8] Bunch T.S., Davies P.C.W.: Proc. R. Soc. Lond. A 360, 117 (1978)
[9] Allen B., Jacobson T.: Commun. Math. Phys. 103, 669 (1986) · Zbl 0632.53060
[10] Tsamis N.C., Woodard R.P.: J. Math. Phys. 48, 052306 (2007) gr-qc/0608069 · Zbl 1144.81417
[11] Carter B., McLenaghan R.G.: Phys. Rev. D 19, 1093 (1979)
[12] Cotăescu I.I.: J. Phys. A Math. Gen. 33, 9177 (2000) · Zbl 0970.83004
[13] Cotăescu I.I.: Mod. Phys. Lett. A 22, 2965 (2007) · Zbl 1139.81337
[14] Cotăescu I.I., Crucean C., Pop A.: Int. J. Mod. Phys A 23, 2563 (2008) arXiv:0802.1972 [gr-qc] · Zbl 1192.81242
[15] Cotăescu I.I.: Phys. Rev. D 65, 084008 (2002)
[16] Cotăescu I.I., Crucean C.: Int. J. Mod. Phys. A 23, 3703 (2008)
[17] Cotăescu I.I.: Int. J. Mod. Phys. A 23, 3707 (2008) arXiv:0711.0816 [gr-qc] · Zbl 1155.81322
[18] Cotăescu, I.I., Crucean, C.: arXiv:0806.2515 [gr-qc]
[19] Bertolami O., Mota D.F.: Phys. Lett. B 455, 96 (1999) gr-qc/9811087
[20] Prokopek T., Törnkvist O., Woodard R.P.: Phys. Rev. Lett. 89, 101301 (2002)
[21] Prokopec, T., Tsamis, N.C., Woodard R.P.: Class. Quantum Gravit. 24 (2007). gr-qc/0607094
[22] Prokopec T., Tsamis N.C., Woodard R.P.: Phys. Rev. D 79, 043523 (2008)
[23] Bogoliubov N.N., Shirkov D.V.: Introduction to the Theory of Quantized Fields. Interscience Publishers, New York (1959) · Zbl 0088.21701
[24] Weinberg S.: The Quantum Theory of Fields. University Press, Cambridge (1995) · Zbl 0865.92026
[25] Koksma J.F., Protopek T.: Class. Quantum Gravit. 26, 125003 (2009) · Zbl 1170.83495
[26] Witten, E.: hep-th/0106109
[27] Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions. Dover, New York (1964) · Zbl 0171.38503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.