zbMATH — the first resource for mathematics

Numerical analysis of heat transfer in pulsating turbulent flow in a pipe. (English) Zbl 1188.76218
Summary: Convection heat transfer in pulsating turbulent flow with large velocity oscillating amplitudes in a pipe at constant wall temperature is numerically studied. A low-Reynolds-number (LRN) \(k-\epsilon \) turbulent model is used in the turbulence modeling. The model analysis indicates that Womersley number is a very important parameter in the study of pulsating flow and heat transfer. Flow and heat transfer in a wide range of process parameters are investigated to reveal the velocity and temperature characteristics of the flow. The numerical calculation results show that in a pulsating turbulent flow there is an optimum Womersley number at which heat transfer is maximally enhanced. Both larger amplitude of velocity oscillation and flow reversal in the pulsating turbulent flow also greatly promote the heat transfer enhancement.

76F35 Convective turbulence
76M12 Finite volume methods applied to problems in fluid mechanics
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI