×

zbMATH — the first resource for mathematics

An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites. (English) Zbl 1188.74076
The authors elaborate on an efficient numerical approach to deal with interface effects described by a coherent interface model and to determine size-dependent effective elastic moduli of nano-composites. The numerical method is verified by experiments and by comparison with existing solutions.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
74Q15 Effective constitutive equations in solid mechanics
74E30 Composite and mixture properties
74M25 Micromechanics of solids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Miller RE and Shenevoy VB (2000). Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3): 139–147
[2] Haile JM (1992). Molecular dynamics simulation. Wiley, New York
[3] Hoover WG (1986). Molecular dynamics. Springer, Berlin
[4] Rapaport DC (2004). The art of molecular dynamics simulation. Cambridge University Press, New York · Zbl 1098.81009
[5] Povstenko YZ (1993). Theoretical investigation of phenomena caused by heterogeneous surface tension in solids. J Mech Phys Solids 41: 1499–1514 · Zbl 0784.73072
[6] Hadal R, Yuan Q, Jog JP and Misra RDK (2006). On stress whitening during surface deformation in clay-containing polymer nanocomposites: a microstructural approach. Mater Sci Eng A 418: 268–281
[7] Benveniste Y (2006). A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. J Mech Phys Solids 54: 708–734 · Zbl 1120.74323
[8] Gurtin ME, Weissmuller J and Larche F (1998). A general theory of curved deformable interfaces in solids at equilibrium. Philos Mag A 78(5): 1093–1109
[9] Sharma P and Ganti S (2006). Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J Appl Mech Trans ASME 71(5): 663–671 · Zbl 1111.74629
[10] Sharma P, Ganti S and Bathe N (2003). Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl Phys Lett 82(4): 535–537
[11] Chen T, Dvorak GJ and Yu CC (2007). Solids containing spherical nano-inclusions with interface stresses: Effective properties and thermal-mechanical connections. Int J Solids Struct 44((3-4)): 941–955 · Zbl 1120.74045
[12] Duan HL, Wang J, Huang ZP and Karihaloo BL (2005). Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J Mech Phys Solids 53(7): 1574–1596 · Zbl 1120.74718
[13] Sharma P, Ganti S (2005) Erratum: ”Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies” (J Appl Mech 71(5):663–671, 2004). J Appl Mech Trans ASME 72:628 · Zbl 1111.74629
[14] Sharma P, Ganti S, Bathe N (2006) Erratum: ”Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities (82:535, 2003). Appl Phys Lett 89(4), No. 049901
[15] Le Quang H, He Q-C. Estimation of the imperfect thermoelastic moduli of fibrous nanocomposites with cylindrically anisotropic phases. Arch Appl Mech (submitted) · Zbl 1168.74426
[16] Le Quang H and He Q-C (2007). Size-dependent effective thermoelastic properties of nanocomposites with spherically anisotropic phases. J Mech Phys Solids 55(9): 1889–1921 · Zbl 1173.74035
[17] Dingreville R, Qu J and Cherkaoui M (2005). Surface free energy and its effect on the elastic behavior of nano-sized particles. J Mech Phys Solids 53(8): 1827–1854 · Zbl 1120.74683
[18] Gao W, Yu S and Huang G (2006). Finite element characterization of the size-dependent mechanical behaviour in nanosystems. Nanotechnology 17: 1118–1122
[19] Osher S and Sethian JA (1998). Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1): 12–49 · Zbl 0659.65132
[20] Belytschko T and Black T (1999). Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5): 601–620 · Zbl 0943.74061
[21] Moës N, Dolbow J and Belytschko T (1999). A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1): 131–156 · Zbl 0955.74066
[22] Sukumar N, Chopp DL, Moës N and Belytschko T (2001). Modeling holes and inclusions by level sets in the extended finite-element method. Comput Meth Appl Mech Eng 190: 6183–6200 · Zbl 1029.74049
[23] Sukumar N, Huang ZY, Prevost J-H and Suo Z (2004). Partition of unity enrichment for bimaterial interface cracks. Int J Numer Methods Eng 59: 1075–1102 · Zbl 1041.74548
[24] Do Carmo MP (1976). Differential geometry of curves and surfaces. Prentice-Hall, New Jersey · Zbl 0326.53001
[25] Thorpe JA (1979). Elementary topics in differential geometry. Springer, Berlin · Zbl 0404.53001
[26] Cammarata RC (1994). Surface and interface stress effects in thin films. Progr Surface Sci 46: 1–38
[27] Chessa J and Belytschko T (2003). An enriched finite element method and level sets for axisymetric two-phase flow with surface tension. Int J Numer Methods Eng 58: 2041–2064 · Zbl 1032.76591
[28] Belytchko T, Parimi C, Moës N, Sukumar N and Usui S (2003). Structured extended finite element method for solids defined by implicit surfaces. Int J Numer Methods Eng 56: 609–635 · Zbl 1038.74041
[29] Moës N, Cloirec M, Cartraud P and Remacle J-F (2003). A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192: 3163–3177 · Zbl 1054.74056
[30] Shenoy VB (2005). Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys Rev B 71: 094104
[31] Barrett R, Berry M, Chan TF, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C, van der Vorst H (1994) Templates for the solution of linear systems: building blocks for iterative methods. SIAM, Philadelphia · Zbl 0814.65030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.