zbMATH — the first resource for mathematics

Further 6-sparse Steiner triple systems. (English) Zbl 1188.05034
Erdös conjectured that for each \(k\geq 4\) there exists \(v(k)\) so that for every admissible \(v>v(k)\) there exists a Steiner Triple System on \(v\) points, \(STS(v),\) which does contains no configuration having \(n\) blocks on \(n+2\) points for \(n\) with \(4\leq n\leq k.\) Such \(STS(v)\) is called to be \(k\)-sparse. The existence of \(4\)-sparse systems for all admissible values of \(v,\) and the existence of \(5\)-sparse systems for almost all admissible values of \( v\) has been established. In this paper the authors construct a \(6\)-sparse \(STS(v)\) for \(v=3p,\) where \(p\) is sufficiently big prime \(p\equiv 3\pmod {4}\).

05B07 Triple systems
Full Text: DOI
[1] Brouwer, A.E.: Steiner triple systems without forbidden subconfigurations. Mathematisch Centrum Amsterdam, ZW 104/77, (1977) · Zbl 0367.05011
[2] Colbourn, C.J., Mendelsohn, E., Rosa, A., Širáň, J.: Anti-mitre Steiner triple systems. Graphs Combin. 10, 215–224 (1994) · Zbl 0815.05017
[3] Erdös, P.: Problems and results in combinatorial analysis. Colloquio Internazionale sulle Teorie Combinatorie (Rome 1973), Tomo II, pp. 3–17. Atti dei Convegni Lincei, No. 17. Accad. Naz. Lincei, Rome (1976)
[4] Forbes, A.D., Grannell, M.J., Griggs, T.S.: On 6-sparse Steiner triple systems. J. Combin. Theory Ser. A 114, 235–252 (2007) · Zbl 1121.05015
[5] Fujiwara, Y.: Constructions for anti-mitre Steiner triple systems. J. Combin. Des. 13, 286–291 (2005) · Zbl 1066.05034
[6] Fujiwara, Y.: Infinite classes of anti-mitre and 5-sparse Steiner triple systems. J. Combin. Des. 14, 237–250 (2006) · Zbl 1089.05012
[7] Grannell, M.J., Griggs, T.S., Whitehead, C.A.: The resolution of the anti-Pasch conjecture. J. Combin. Des. 8, 300–309 (2000) · Zbl 0959.05016
[8] Griggs, T.S., Murphy, J.P., Phelan, J.S.: Anti-Pasch Steiner triple systems. J. Combin. Inform. System Sci. 15, 79–84 (1990) · Zbl 0741.05009
[9] Ling, A.C.H.: A direct product construction for 5-Sparse Steiner triple systems. J. Combin. Des. 5, 443–447 (1997) · Zbl 0912.05012
[10] Ling, A.C.H., Colbourn, C.J., Grannell, M.J., Griggs, T.S.: Construction techniques for anti-Pasch Steiner triple systems. J. London Math. Soc. (2) 61, 641–657 (2000) · Zbl 0956.05023
[11] Schmidt, W.M.: Equations over Finite Fields. Lecture Notes in Mathematics 536. Berlin Heidelberg New York: Springer (1976) · Zbl 0329.12001
[12] Wolfe, A.: The resolution of the anti-mitre Steiner triple system conjecture. J. Combin. Des. 14, 229–236 (2006) · Zbl 1089.05013
[13] Wolfe, A.: Private communication (2006)
[14] Wolfe, A.: 5-sparse Steiner triple systems of order n exist for almost all admissible n. Electron. J. Combin. 12, #R68, 42 pp. (electronic) (2005) · Zbl 1079.05013
[15] Wolfe, A.: The existence of 5-sparse Steiner triple systems of order \(n \equiv 3 ({\mathrm mod} 6), n \notin \{9,15\}\) . J. Combin. Theory Ser. A 115, 1487–1503 (2008) · Zbl 1157.05011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.