zbMATH — the first resource for mathematics

A model-based block-triangular preconditioner for the bidomain system in electrocardiology. (English) Zbl 1187.92053
Summary: We introduce a preconditioner for the solution of the bidomain system governing the propagation of action potentials in the myocardial tissue. The bidomain model is a degenerate parabolic set of nonlinear reaction-diffusion equations. The nonlinear term describes the ion flux at the cellular level. The degenerate nature of the problem results in a severe ill conditioning of its discretization. Our preconditioning strategy is based on a suitable adaptation of the monodomain model, a simplified version of the bidomain one, which is by far simpler to solve, nevertheless is unable to capture significant features of the action potential propagation. The monodomain preconditioner application to a non-symmetric formulation of the bidomain system results at the algebraic level in a lower block-triangular preconditioner. We prove optimality of the preconditioner with respect to the mesh size, and corroborate our theoretical results with 3D numerical simulations both on idealized and real ventricle geometries.

92C50 Medical applications (general)
92C05 Biophysics
35K57 Reaction-diffusion equations
92C55 Biomedical imaging and signal processing
35Q92 PDEs in connection with biology, chemistry and other natural sciences
65T50 Numerical methods for discrete and fast Fourier transforms
Full Text: DOI
[1] Software, <http://www.LifeV.org>.
[2] Software, <http://trilinos.sandia.gov>. · Zbl 0569.90061
[3] Ajmone Marsan, N.; Henneman, M.; Chen, J.; Ypenburg, C.; Dibbets, P.; Ghio, S.; Bleeker, G.; Stokkel, M.; van der Wall, E.E.; Tavazzi, L.; Garcia, E.; Bax, J., Left ventricular dyssyncrony assessed by two three-dimensional imaging modalities: phase analysis of gated myocardial perfusion SPECT and tri-plane tissue Doppler imaging, Eur. J. nucl. med. mol. imaging, 35, 166-173, (2008)
[4] Alonso-Rodriguez, A.; Gerardo-Giorda, L., New non-overlapping domain decomposition methods for the time-harmonic Maxwell system, SIAM J. sci. comput., 28, 1, 102-122, (2006) · Zbl 1106.78014
[5] Belik, M.E.; Usyk, T.P.; McCulloch, A.D., Computational methods fro cardiac electrophysiology, ()
[6] Benzi, M.; Golub, G.; Liesen, J., Numerical solution of saddle point problems, Acta numer., 1-137, (2005) · Zbl 1115.65034
[7] Bochev, P.; Lehouc, R., On the finite element solution of the pure Neumann problem, SIAM rev., 47, 1, 50-66, (2005) · Zbl 1084.65111
[8] Chen, J.; Garcia, E.V.; Folks, R.; Cooke, C.; Faber, T.; Tauxe, E.; Iskandrian, A., Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: development of a diagnostic tool for assessment of cardiac mechanical dyssyncrony, J. nucl. cardiol., 12, 6, 687-695, (2005)
[9] Clayton, R.; Panfilov, A., A guide to modelling cardiac electrical activity in anatomically detailed ventricles, Progr. biophys. mol. biol., 96, 1-3, 19-43, (2008)
[10] Clements, J.; Nenonen, J.; Li, P.; Horacek, M., Activation dynamics in anisotropic cardiac tissue via decoupling, Ann. biomed. eng., 32, 7, 984-990, (2004)
[11] Colli Franzone, P.; Guerri, L.; Pennacchio, M.; Taccardi, B., Spread of excitation in 3-d models of the anisotropic cardiac tissue. iii: effects of ventricular geometry and fiber structure on the potential distribution, Math. biosci., 151, 51-98, (1998) · Zbl 0938.92009
[12] Colli Franzone, P.; Pavarino, L.F., A parallel solver for reaction-diffusion systems in computational electrocardiology, Math. mod. meth. appl. sci., 14, 6, 883-911, (2004) · Zbl 1068.92024
[13] Colli Franzone, P.; Pavarino, L.F.; Taccardi, B., Simulating patterns of excitation, repolarization and action potential duration with cardiac bidomain and monodomain models, Math. biosci., 197, 35-66, (2005) · Zbl 1074.92004
[14] P. Colli Franzone, G. Savarè, Degenerate evolution systems modeling the cardiac electric field at micro and macroscopic level, In: A. Lorenzi, B. Ruf (Eds.), Evolution Equations, Semigroups and Functional Analysis: in memory of Brunello Terreni, vol. 50, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Verlag, 2002, pp. 49-78. · Zbl 1036.35087
[15] FitzHugh, R., Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1, 445-466, (1961)
[16] Fried, I., Bounds on the extremal eigenvalues of the finite element stiffness and mass matrices and their spectral condition number, J. sound vib., 22, 407-418, (1972) · Zbl 0244.73048
[17] Gerardo-Giorda, L.; Le Tallec, P.; Nataf, F., A robin – robin preconditioner for advection-diffusion equations with discontinuous coefficients, Comput. meth. appl. mech. eng., 193, 9-11, 745-764, (2004) · Zbl 1053.76039
[18] Henriquez, C., Simulating the electrical behavior of cardiac tissue using the bidomain model, Crit. rev. biomed. eng., 21, 1-77, (1993)
[19] Huiskamp, G., Simulation of depolarization in a membrane-equation-based model of the anisotropic ventricle, IEEE trans. biomed. eng., 45, 7, 847-855, (1998)
[20] Keener, J.P., Direct activation and defibrillation of cardiac tissue, J. theor. biol., 178, 313-324, (1996)
[21] Le Grice, J.; Smaill, B.; Hunter, P., Laminar structure of the heart: a mathematical model, Am. J. physiol., 272, 41, H2466-H2476, (1995), Heart Circ. Physiol.
[22] Luo, L.; Rudy, Y., A model of the ventricular cardiac action potential: depolarization, repolarization and their interaction, Circ. res., 68, (1991)
[23] Nielsen, B.F.; Ruud, T.S.; Lines, G.T.; Tveito, A., Optimal monodomain approximation of the bidomain equations, Appl. math. comput., 184, 276-290, (2007) · Zbl 1115.92005
[24] Pavarino, L.F.; Scacchi, S., Multilevel additive Schwarz preconditioners for the bidomain reaction-diffusion system, SIAM J. sci. comput., 31, 1, 420-443, (2008) · Zbl 1185.65179
[25] Pennacchio, M.; Simoncini, V., Efficient algebraic solution of reaction-diffusion systems for the cardiac excitation process, J. comput. appl. math., 145, 1, 49-70, (2002) · Zbl 1006.65102
[26] Potse, M.; Dubé, B.; Richer, J.; Vinet, A., A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart, IEEE trans. biomed. eng., 53, 12, 2425-2435, (2006)
[27] Pullan, A.; Buist, M.; Cheng, L., Mathematical modelling the electrical activity of the heart, (2005), World Scientific Singapore
[28] Colli Franzone, P.; Pavarino, L.; Savaré, G., Computational electrocardiology: mathematical and numerical modeling, () · Zbl 1387.92056
[29] Rogers, J.; McCulloch, A., A collocation-Galerkin finite element model of cardiac action potential propagation, IEEE trans. biomed. eng., 41, 743-757, (1994)
[30] Roth, B., Action potential propagation in a thick strand of cardiac muscle, Circ. res., 68, 162-173, (1991)
[31] Rudy, Y.; Silva, J., Computational biology in the study of cardiac ion channels and cell electrophysiology, Quart. rev. biophys., 39, 1, 57-116, (2006)
[32] Saad, Y., Iterative methods for sparse linear systems, (1996), PWS Boston · Zbl 1002.65042
[33] Sachse, F.B., Computational cardiology, (2004), Springer Berlin · Zbl 1051.92025
[34] Sanfelici, S., Convergence of the Galerkin approximation of a degenerate evolution problem in electrocardiology, Numer. meth. part. diff. eqn., 18, 218-240, (2002) · Zbl 1002.65100
[35] Scacchi, S., A hybrid multilevel Schwarz method for the bidomain model, Comput. meth. appl. mech. eng., 197, 45-48, 4051-4061, (2008) · Zbl 1194.78048
[36] S. Scacchi, Multilevel Schwarz preconditioner for the Bidomain system and applications in Electrocardiology, Ph.D. Thesis, University of Pavia, 2008. · Zbl 1194.78048
[37] Veneroni, M., Reaction-diffusion systems for the microscopic cellular model of the cardiac electric field, Math. meth. appl. sci., 29, 14, 1631-1661, (2006) · Zbl 1108.35090
[38] Vigmond, E.; Weber dos Santos, R.; Prassl, A.; Deo, M.; Plank, G., Solvers for the cardiac bidomain equations, Progr. biophys. mol. biol., 96, 1-3, 3-18, (2008)
[39] Vigmond, E.J.; Aguel, F.; Trayanova, N.A., Computational techniques for solving the bidomain equations in three dimensions, IEEE trans. biomed. eng., 49, 11, 1260-1269, (2002)
[40] Winslow, R.L.; Rice, J.J.; Jafri, S.; Marban, E.; O’Rourke, B., Mechanisms of altered excitation – contraction coupling in canine tachycardia-induced heart failure, ii: model studies, Circ. res., 84, 5, 571-586, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.