×

zbMATH — the first resource for mathematics

Stokes’ first problem for an Oldroyd-B fluid in a porous half space. (English) Zbl 1187.76517
Editorial remark: No review copy delivered.

MSC:
76-XX Fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/978-3-642-85829-1 · doi:10.1007/978-3-642-85829-1
[2] Taipel I., Acta Mech. 39 pp 277– (1981) · doi:10.1007/BF01170349
[3] Morrison J. A., Q. J. Mech. Appl. Math. 14 pp 153– (1956)
[4] Huilgol R. R., J. Non-Newtonian Fluid Mech. 12 pp 249– (1983) · Zbl 0526.76009 · doi:10.1016/0377-0257(83)80042-1
[5] Tanner R., ZAMP 13 pp 573– (1962) · Zbl 0127.40402 · doi:10.1007/BF01595580
[6] Preziosi L., J. Non-Newtonian Fluid Mech. 25 pp 239– (1987) · Zbl 0683.76006 · doi:10.1016/0377-0257(87)85028-0
[7] Phan-Thien N., J. Non-Newtonian Fluid Mech. 28 pp 117– (1988) · Zbl 0669.76020 · doi:10.1016/0377-0257(88)80013-2
[8] Bandelli R., Int. J. Non-Linear Mech. 30 pp 817– (1995) · Zbl 0866.76004 · doi:10.1016/0020-7462(95)00035-6
[9] DOI: 10.1063/1.1369605 · Zbl 1184.76335 · doi:10.1063/1.1369605
[10] Fetecau C., Int. J. Non-Linear Mech. 37 pp 1011– (2002) · Zbl 1346.76027 · doi:10.1016/S0020-7462(00)00118-9
[11] Tan W. C., Mech. Res. Commun. 29 pp 3– (2002) · Zbl 1151.76368 · doi:10.1016/S0093-6413(02)00223-9
[12] Tan W. C., Acta Mech. Sin. 18 pp 342– (2002) · doi:10.1007/BF02487786
[13] Lozinski A., J. Non-Newtonian Fluid Mech. 112 pp 161– (2003) · Zbl 1065.76018 · doi:10.1016/S0377-0257(03)00096-X
[14] Phillips T. N., J. Non-Newtonian Fluid Mech. 108 pp 25– (2002) · Zbl 1039.76040 · doi:10.1016/S0377-0257(02)00123-4
[15] DOI: 10.1017/S0022112098008672 · Zbl 0924.76006 · doi:10.1017/S0022112098008672
[16] DOI: 10.1016/S0377-0257(02)00191-X · Zbl 1027.76003 · doi:10.1016/S0377-0257(02)00191-X
[17] Rajagopal K. R., Acta Mech. 113 pp 233– (1995) · Zbl 0858.76010 · doi:10.1007/BF01212645
[18] Hayat T., Int. J. Eng. Sci. 39 pp 135– (2001) · doi:10.1016/S0020-7225(00)00026-4
[19] Fetecau C., Int. J. Non-Linear Mech. 38 pp 1539– (2003) · Zbl 1287.76044 · doi:10.1016/S0020-7462(02)00117-8
[20] Anis Y., Int. J. Heat Mass Transfer 46 pp 367– (2003) · Zbl 1121.76416 · doi:10.1016/S0017-9310(02)00264-8
[21] DOI: 10.1007/978-1-4757-3033-3 · doi:10.1007/978-1-4757-3033-3
[22] DOI: 10.1016/S0020-7225(99)00048-8 · Zbl 1210.76177 · doi:10.1016/S0020-7225(99)00048-8
[23] Khaled A. R. A., Int. J. Heat Mass Transfer 46 pp 4989– (2003)
[24] Jordan P. M., Int. J. Non-Linear Mech. 38 pp 1019– (2003) · Zbl 1348.76150 · doi:10.1016/S0020-7462(02)00048-3
[25] DOI: 10.1103/PhysRevE.67.056306 · doi:10.1103/PhysRevE.67.056306
[26] Khaled A. R. A., Int. J. Heat Mass Transfer 46 pp 4989– (2003) · Zbl 1121.76521 · doi:10.1016/S0017-9310(03)00301-6
[27] Kim M. C., Int. J. Heat Mass Transfer 46 pp 5065– (2003) · Zbl 1052.76019 · doi:10.1016/S0017-9310(03)00363-6
[28] Vafai K., Int. J. Heat Mass Transfer 24 pp 195– (1981) · Zbl 0464.76073 · doi:10.1016/0017-9310(81)90027-2
[29] DOI: 10.1017/CBO9780511800238 · doi:10.1017/CBO9780511800238
[30] T. Masuoka and Y. Takatsu, inTurbulence Characteristics in Porous Media, Transport Phenomena in Porous MediaVol. II, edited by B. I. Derek and I. Pop (Elsevier Sci. Ltd, Boston, 2002), pp. 231–256. · Zbl 1276.76028
[31] Fetecau C., Int. J. Non-Linear Mech. 38 pp 423– (2003) · Zbl 1287.76041 · doi:10.1016/S0020-7462(01)00062-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.