×

zbMATH — the first resource for mathematics

Polymer drag reduction in exact coherent structures of plane shear flow. (English) Zbl 1187.76502
Editorial remark: No review copy delivered.

MSC:
76-XX Fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1002/aic.690210402 · doi:10.1002/aic.690210402
[2] DOI: 10.1146/annurev.fl.01.010169.002055 · doi:10.1146/annurev.fl.01.010169.002055
[3] W.D. McComb, The Physics of Fluid Turbulence (Oxford University Press, New York, 1990). · Zbl 0748.76005
[4] M.D. Graham, ” Drag reduction in turbulent flow of polymer solutions,” in Rheology Reviews 2004 (British Society of Rheology, 2004).
[5] G. L. Donohue, W. G. Tiederman, and M. M. Reischman, ”Flow visualization of the near-wall region in a drag-reducing channel flow,” J. Fluid Mech.JFLSA7 50, 559 (1972).JFLSA70022-1120
[6] W. G. Tiederman, T. S. Luchik, and D. G. Bogard, ”Wall-layer structure and drag reduction,” J. Fluid Mech.JFLSA7 156, 419 (1985).JFLSA70022-1120
[7] D. T. Walker and W. G. Tiederman, ”Turbulent structure in a channel flow with polymer injection at the wall,” J. Fluid Mech.JFLSA7 218, 377 (1990).JFLSA70022-1120
[8] DOI: 10.1016/S0377-0257(98)00098-6 · Zbl 0948.76523 · doi:10.1016/S0377-0257(98)00098-6
[9] DOI: 10.1146/annurev.fluid.23.1.601 · doi:10.1146/annurev.fluid.23.1.601
[10] P. Holmes, J.L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry (Cambridge University Press, New York, 1996). · Zbl 0890.76001 · doi:10.1017/CBO9780511622700
[11] S.B. Pope, Turbulent Flows (Cambridge University Press, New York, 2000). · Zbl 0966.76002 · doi:10.1017/CBO9780511840531
[12] DOI: 10.1063/1.869229 · doi:10.1063/1.869229
[13] DOI: 10.1017/S0022112097004850 · doi:10.1017/S0022112097004850
[14] DOI: 10.1017/S0022112098003139 · Zbl 0941.76528 · doi:10.1017/S0022112098003139
[15] J. L. Lumley, ”Drag reduction in turbulent flow by polymer additives,” J. Polym. Sci., Macromol. Rev. 7, 263 (1973). · doi:10.1002/pol.1973.230070104
[16] T. Wei and W. W. Willmarth, ”Modifying turbulent structure with drag-reducing polymer additives in turbulent channel flows,” J. Fluid Mech.JFLSA7 245, 619 (1992).JFLSA70022-1120
[17] DOI: 10.1017/S0022112003005305 · Zbl 1063.76580 · doi:10.1017/S0022112003005305
[18] DOI: 10.1063/1.1345882 · Zbl 1184.76137 · doi:10.1063/1.1345882
[19] DOI: 10.1063/1.1589484 · Zbl 1186.76235 · doi:10.1063/1.1589484
[20] M. Nagata, ”Bifurcation in Couette flow between almost corotating cylinders,” J. Fluid Mech.JFLSA7 169, 229 (1986).JFLSA70022-1120
[21] M. Nagata, ”On wavy instabilities of the Taylor-vortex flow between corotating cylinders,” J. Fluid Mech.JFLSA7 188, 585 (1988).JFLSA70022-1120 · Zbl 0642.76067
[22] M. Nagata, ”Three-dimensional finite amplitude solutions in plane Couette flow: bifurcation from infinity,” J. Fluid Mech.JFLSA7 217, 519 (1990).JFLSA70022-1120
[23] DOI: 10.1017/S0022112097005818 · Zbl 0898.76028 · doi:10.1017/S0022112097005818
[24] DOI: 10.1103/PhysRevLett.81.4140 · doi:10.1103/PhysRevLett.81.4140
[25] DOI: 10.1017/S0022112001004189 · Zbl 0987.76034 · doi:10.1017/S0022112001004189
[26] DOI: 10.1063/1.1566753 · Zbl 1186.76556 · doi:10.1063/1.1566753
[27] J. Jeong, F. Hussian, W. Schoppa, and J. Kim, ”Coherent structures near the wall in a turbulent channel flow,” J. Fluid Mech.JFLSA7 332, 185 (1997).JFLSA70022-1120
[28] DOI: 10.1103/PhysRevLett.91.224502 · doi:10.1103/PhysRevLett.91.224502
[29] S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering (Addison-Wesley, New York, 1994).
[30] DOI: 10.1063/1.869773 · doi:10.1063/1.869773
[31] D. R. Carlson, S. E. Widnall, and M. F. Peeters, ”A flow-visualization study of transition in plane Poiseuille flow,” J. Fluid Mech.JFLSA7 121, 487 (1982).JFLSA70022-1120
[32] R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, 2nd ed. (Wiley, New York, 2002).
[33] J. JimĂ©nez and P. Moin, ”The minimal flow unit in near wall turbulence,” J. Fluid Mech.JFLSA7 225, 221 (1991).JFLSA70022-1120
[34] P.A. Stone, Ph.D. thesis, University of Wisconsin-Madison, 2004.
[35] G. Kawahara and S. Kida, ”Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst,” J. Fluid Mech.JFLSA7 449, 291 (2001).JFLSA70022-1120 · Zbl 0996.76034
[36] DOI: 10.1017/S0022112003003768 · Zbl 1034.76014 · doi:10.1017/S0022112003003768
[37] DOI: 10.1017/S0022112001004050 · Zbl 1022.76022 · doi:10.1017/S0022112001004050
[38] J. M. Hamilton, J. Kim, and F. Waleffe, ”Regeneration mechanisms of near-wall turbulent structures,” J. Fluid Mech.JFLSA7 287, 317 (1995).JFLSA70022-1120 · Zbl 0867.76032
[39] DOI: 10.1063/1.869185 · doi:10.1063/1.869185
[40] P.G. Drazin and W.H. Reid, Hydrodynamic Stability (Cambridge University Press, New York, 1981).
[41] DOI: 10.1103/PhysRevLett.89.208301 · doi:10.1103/PhysRevLett.89.208301
[42] DOI: 10.1017/S0022112003004610 · Zbl 1054.76041 · doi:10.1017/S0022112003004610
[43] R.B. Bird, C.F. Curtiss, R.C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, 2nd ed. (Wiley, New York, 1987), Vol. 2.
[44] DOI: 10.1063/1.1563258 · Zbl 1186.76502 · doi:10.1063/1.1563258
[45] DOI: 10.1016/S0377-0257(01)00128-8 · Zbl 1134.76409 · doi:10.1016/S0377-0257(01)00128-8
[46] Y. Dubief and S.K. Lele, ” Direct numerical simulation of polymer flow,” in Center for Turbulence Research Annual Research Briefs (Stanford University, 2001), pp. 197–204.
[47] Y. Dubief, V.E. Terrapon, C.M. White, E. Shaqfeh, P. Moin, and S. Lele, ” New answers on the interaction between polymers and vortices in turbulent flows,” Flow, Turbul. Combust. (to be published). · Zbl 1200.76106 · doi:10.1007/s10494-005-9002-6
[48] DOI: 10.1016/0377-0257(95)01377-8 · doi:10.1016/0377-0257(95)01377-8
[49] DOI: 10.1063/1.1448497 · doi:10.1063/1.1448497
[50] DOI: 10.1016/S0045-7930(01)00069-X · Zbl 1075.76556 · doi:10.1016/S0045-7930(01)00069-X
[51] DOI: 10.1023/A:1017985826227 · Zbl 1094.76506 · doi:10.1023/A:1017985826227
[52] DOI: 10.1007/s003480050371 · doi:10.1007/s003480050371
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.