×

Formal concept analysis via multi-adjoint concept lattices. (English) Zbl 1187.68589

Summary: Several fuzzifications of formal concept analysis have been proposed to deal with uncertain information. In this paper, we focus on concept lattices under a multi-adjoint paradigm, which enriches the language providing greater flexibility to the user in that he/she can choose from a number of different connectives. Multi-adjoint concept lattices are shown to embed different fuzzy extensions of concept lattices found in the literature, the main results of the paper being the representation theorem of this paradigm and the embedding of other well-known approaches.

MSC:

68T30 Knowledge representation
06B75 Generalizations of lattices
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abdel-Hamid, A.; Morsi, N., Associatively tied implicacions, Fuzzy sets and systems, 136, 3, 291-311, (2003) · Zbl 1042.03021
[2] R. Bělohlávek, Lattice generated by binary fuzzy relations (extended abstract), in: 4th Internat. Conf. on Fuzzy Sets Theory and Applications, 1998, p. 11.
[3] Bělohlávek, R., Lattices of fixed points of fuzzy Galois connections, Math. logic quart., 47, 1, 111-116, (2001) · Zbl 0976.03025
[4] Bělohlávek, R., Fuzzy relational systems: foundations and principles, (2002), Kluwer Academic Publishers Dordrecht · Zbl 1067.03059
[5] Bělohlávek, R., Concept lattices and order in fuzzy logic, Ann. pure appl. logic, 128, 277-298, (2004) · Zbl 1060.03040
[6] R. Bělohlávek, V. Vychodil, What is a fuzzy concept lattice? in: Internat. Workshop on Concept Lattices and their Applications, 2005, pp. 34-45.
[7] Burusco, A.; Fuentes-González, R., The study of \(L\)-fuzzy concept lattice, Mathware soft comput., 3, 209-218, (1994) · Zbl 0827.06004
[8] Burusco, A.; Fuentes-González, R., Concept lattices defined from implication operators, Fuzzy sets and systems, 114, 431-436, (2000) · Zbl 0971.06010
[9] Davey, B.; Priestley, H., Introduction to lattices and order, (2002), Cambridge University Press Cambridge · Zbl 1002.06001
[10] Ganter, B.; Wille, R., Formal concept analysis: mathematical foundation, (1999), Springer Berlin
[11] Georgescu, G.; Popescu, A., Concept lattices and similarity in non-commutative fuzzy logic, Fund. inform., 55, 1, 23-54, (2002) · Zbl 1023.03016
[12] Georgescu, G.; Popescu, A., Non-commutative fuzzy Galois connections, Soft comput., 7, 7, 458-467, (2003) · Zbl 1024.03025
[13] Georgescu, G.; Popescu, A., Non-dual fuzzy connections, Arch. math. logic, 43, 8, 1009-1039, (2004) · Zbl 1060.03042
[14] Georgescu, G.; Popescu, A., Similarity convergence in residuated structures, Logic J. IGPL, 13, 4, 389-413, (2005) · Zbl 1082.03058
[15] Hájek, P., Metamathematics of fuzzy logic, () · Zbl 0937.03030
[16] Julián, P.; Moreno, G.; Penabad, J., On fuzzy unfolding: a multi-adjoint approach, Fuzzy sets and systems, 154, 16-33, (2005) · Zbl 1099.68017
[17] S. Krajči, The basic theorem on generalised concept lattice, in: V. Snášel, R. Bělohlávek (Eds.), ERCIM Workshop on Soft Computing, 2004, pp. 25-33.
[18] Krajči, S., A generalized concept lattice, Logic J. IGPL, 13, 5, 543-550, (2005) · Zbl 1088.06005
[19] J. Medina, M. Ojeda-Aciego, J. Ruiz-Calviño, On multi-adjoint concept lattices: definition and representation theorem, in: Lecture Notes in Artificial Intelligence, Vol. 4390, 2007, pp. 197-209. · Zbl 1187.68588
[20] J. Medina, M. Ojeda-Aciego, A. Valverde, P. Vojtáš, Towards biresiduated multi-adjoint logic programming, in: Lecture Notes in Artificial Intelligence, Vol. 3040, 2004, pp. 608-617.
[21] Medina, J.; Ojeda-Aciego, M.; Vojtáš, P., Similarity-based unification: a multi-adjoint approach, Fuzzy sets and systems, 146, 1, 43-62, (2004) · Zbl 1073.68026
[22] J. Medina, J. Ruiz-Calviño, Towards multi-adjoint concept lattices, in: Information Processing and Management of Uncertainty for Knowledge-Based Systems, IPMU’06, 2006, pp. 2566-2571.
[23] Pollandt, S., Fuzzy begriffe, (1997), Springer Berlin · Zbl 0870.06008
[24] R. Wille, Restructuring lattice theory: an approach based on hierarchies of concepts, in: I. Rival (Ed.), Ordered Sets, Reidel, 1982, pp. 445-470. · Zbl 0491.06008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.