×

Automated breast cancer detection and classification using ultrasound images: a survey. (English) Zbl 1187.68437

Summary: Breast cancer is the second leading cause of death for women all over the world. Since the cause of the disease remains unknown, early detection and diagnosis is the key for breast cancer control, and it can increase the success of treatment, save lives and reduce cost. Ultrasound imaging is one of the most frequently used diagnosis tools to detect and classify abnormalities of the breast. In order to eliminate the operator dependency and improve the diagnostic accuracy, computer-aided diagnosis (CAD) system is a valuable and beneficial means for breast cancer detection and classification. Generally, a CAD system consists of four stages: preprocessing, segmentation, feature extraction and selection, and classification. In this paper, the approaches used in these stages are summarized and their advantages and disadvantages are discussed. The performance evaluation of CAD system is investigated as well.

MSC:

68T10 Pattern recognition, speech recognition
68U99 Computing methodologies and applications
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Cheng, H.; Cai, X.; Chen, X.; Hu, L.; Lou, X., Computer-aided detection and classification of microcalcifications in mammograms: a survey, Pattern Recognition, 36, 2967-2991 (2003) · Zbl 1058.68621
[2] Cheng, H.; Shi, X.; Min, R.; Hu, L.; Cai, X.; Du, H., Approaches for automated detection and classification of masses in mammograms, Pattern Recognition, 39, 4, 646-668 (2006)
[3] Chang, R. F.; Wu, W. J.; Moon, W. K.; Chen, D. R., Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis, Ultrasound in Medicine and Biology, 29, 5, 679-686 (2003)
[4] Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Murray, T.; Thun, M. J., Cancer Statistics 2008, CA: A Cancer Journal for Clinicians, 58, 2, 71-96 (2008)
[5] Jesneck, J.; Lo, J.; Baker, J., Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors, Radiology, 244, 2, 390-398 (2007)
[6] Shankar, P.; Piccoli, C.; Reid, J.; Forsberg, J.; Goldberg, B., Application of the compound probability density function for characterization of breast masses in ultrasound B scans, Physics in Medicine and Biology, 50, 10, 2241-2248 (2005)
[7] Taylor, K.; Merritt, C.; Piccoli, C.; Schmidt, R.; Rouse, G.; Fornage, B.; Rubin, E.; Georgian-Smith, D.; Winsberg, F.; Goldberg, B.; Mendelson, E., Ultrasound as a complement to mammography and breast examination to characterize breast masses, Ultrasound in Medicine and Biology, 28, 1, 19-26 (2002)
[8] Zhi, H.; Ou, B.; Luo, B.; Feng, X.; Wen, Y.; Yang, H., Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions, Journal of Ultrasound in Medicine, 26, 6, 807-815 (2007)
[9] Sahiner, B., Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy, Radiology, 242, 3, 716-724 (2007)
[10] Chen, C. M.; Chou, Y. H.; Han, K. C.; Hung, G. S.; Tiu, C. M.; Chiou, H. J.; Chiou, S. Y., Breast lesions on sonograms: computer-aided diagnosis with nearly setting-independent features and artificial neural networks, Radiology, 226, 504-514 (2003)
[11] Drukker, K.; Giger, M. L.; Horsch, K.; Kupinski, M. A.; Vyborny, C. J.; Mendelson, E. B., Computerized lesion detection on breast ultrasound, Medical Physics, 29, 7, 1438-1446 (2002)
[12] Andr, M. P.; Galperin, M.; Olson, L. K.; Richman, K.; Payrovi, S.; Phan, P., Improving the accuracy of diagnostic breast ultrasound, Acoustical Imaging, 26, 453-460 (2002)
[13] Y.L. Huang, D.R. Chen, Y.K. Liu, Breast cancer diagnosis using image retrieval for different ultrasonic systems, in: International Conference on Image Processing, vol. 5, 2004, pp. 2598-2960.; Y.L. Huang, D.R. Chen, Y.K. Liu, Breast cancer diagnosis using image retrieval for different ultrasonic systems, in: International Conference on Image Processing, vol. 5, 2004, pp. 2598-2960.
[14] Costantini, M.; Belli, P.; Lombardi, R.; Franceschini, G.; Mule, A.; Bonomo, L., Characterization of solid breast masses use of the sonographic breast imaging reporting and data system lexicon, Journal of Ultrasound in Medicine, 25, 5, 649-659 (2006)
[15] K.H. Hwang, J.G. Lee, J.H. Kim, H.J. Lee, K.S. Om, M. Yoon, W. Choe, Computer aided diagnosis (CAD) of breast mass on ultrasonography and scintimammography, in: Proceedings of Seventh International Workshop on Enterprise networking and computing in Healthcare Industry, HEALTHCOM 2005, 2005, pp. 187-189.; K.H. Hwang, J.G. Lee, J.H. Kim, H.J. Lee, K.S. Om, M. Yoon, W. Choe, Computer aided diagnosis (CAD) of breast mass on ultrasonography and scintimammography, in: Proceedings of Seventh International Workshop on Enterprise networking and computing in Healthcare Industry, HEALTHCOM 2005, 2005, pp. 187-189.
[16] Y.-L. Huang, Computer-aided diagnosis applied to 3-D US of solid breast nodules by using principal component analysis and image retrieval, in: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 2005, pp. 1802-1805.; Y.-L. Huang, Computer-aided diagnosis applied to 3-D US of solid breast nodules by using principal component analysis and image retrieval, in: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 2005, pp. 1802-1805.
[17] J.H. Song, S.S. Venkatesh, E.F.C. Md, T.W. Cary, P.H. Md, Artificial neural network to aid differentiation of malignant and benign breast masses by ultrasound imaging, in: Proceedings of SPIE, vol. 5750, 2005, pp. 148-152.; J.H. Song, S.S. Venkatesh, E.F.C. Md, T.W. Cary, P.H. Md, Artificial neural network to aid differentiation of malignant and benign breast masses by ultrasound imaging, in: Proceedings of SPIE, vol. 5750, 2005, pp. 148-152.
[18] Segyeong, J.; Yoon, S. Y.; Woo, K. M.; Hee, C. K., Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features, IEEE Transactions on Medical Imaging, 23, 10, 1292-1300 (2004)
[19] Guo, Y. H.; Cheng, H. D.; Huang, J. H.; Tian, J. W.; Zhao, W.; Sun, L. T.; Su, Y. X., Breast ultrasound image enhancement using fuzzy logic, Ultrasound in Medicine and Biology, 32, 2, 237-247 (2006)
[20] Huang, Y.; Wang, K.; Chen, D., Diagnosis of breast tumors with ultrasonic texture analysis using support vector machines, Neural Computing & Applications, 15, 2, 164-169 (2006)
[21] H.D.C. Xiangjun Shi, Liming Hu, Mass detection and classification in breast ultrasound images using fuzzy SVM, in: JCIS-2006 Proceedings, 2006.; H.D.C. Xiangjun Shi, Liming Hu, Mass detection and classification in breast ultrasound images using fuzzy SVM, in: JCIS-2006 Proceedings, 2006.
[22] Chen, D. R.; Kuo, W. J.; Chang, R. F.; Moon, W. K.; Lee, C. C., Use of the bootstrap technique with small training sets for computer-aided diagnosis in breast ultrasound, Ultrasound in Medicine and Biology, 28, 7, 897-902 (2002)
[23] R.F. Chang, K.C. Chang-Chien, E. Takada, J.S. Suri, W.K. Moon, J.H.K. Wu, N. Cho, Y.F. Wang, D.R. Chen, Breast density analysis in 3-D whole breast ultrasound images, in: Proceedings of the 28th IEEE EMBS Annual International Conference, 2006, pp. 2795-2798.; R.F. Chang, K.C. Chang-Chien, E. Takada, J.S. Suri, W.K. Moon, J.H.K. Wu, N. Cho, Y.F. Wang, D.R. Chen, Breast density analysis in 3-D whole breast ultrasound images, in: Proceedings of the 28th IEEE EMBS Annual International Conference, 2006, pp. 2795-2798.
[24] B. Sahiner, H. Chan, G. LeCarpentier, N. Petrick, M. Roubidoux, P. Carson, Computerized characterization of solid breast masses using three-dimensional ultrasound images, in: Proceedings of SPIE, Medical Imaging 1998: Image Processing, vol. 3338, 1998, pp. 301-312.; B. Sahiner, H. Chan, G. LeCarpentier, N. Petrick, M. Roubidoux, P. Carson, Computerized characterization of solid breast masses using three-dimensional ultrasound images, in: Proceedings of SPIE, Medical Imaging 1998: Image Processing, vol. 3338, 1998, pp. 301-312.
[25] P.S. Rodrigues, A new methodology based on \(q\); P.S. Rodrigues, A new methodology based on \(q\)
[26] Chen, D. R.; Chang, R. F.; Chen, W. M.; Moon, W. K., Computer-aided diagnosis for 3-dimensional breast ultrasonography, Archives of Surgery, 138, 296-302 (2003)
[27] Nagashima, T.; Hashimoto, H., Ultrasound demonstration of mammographically detected microcalcifications in patients with ductal carcinoma in situ of the breast, Breast Cancer, 12, 3, 216-220 (2005)
[28] Yang, W. T., In vivo demonstration of microcalcification in breast cancer using high resolution ultrasound, British Journal of Radiology, 70, 835, 685-690 (1997)
[29] Weng, L.; Reid, J. M.; Shankar, P. M.; Soetanto, K., Ultrasound speckle analysis based on the \(k\) distribution, The Journal of the Acoustical Society of America, 89, 6, 2992-2995 (1991)
[30] Jakeman, E.; Tough, R. J.A., Generalized \(k\) distribution: a statistical model for weak scattering, Journal of the Optical Society of America A, 4, 9, 1764-1772 (1987)
[31] Ossant, F.; Patat, F.; Lebertre, M.; Teriierooiterai, M. L.; Pourselot, L., Effective density estimators based on the k distribution: interest of low and fractional order moments, Ultrasonic Imaging, 20, 243-259 (1998)
[32] Dutt, V.; Greenleaf, J. F., Ultrasound echo envelope analysis using a homodyned \(k\) distribution signal model, Ultrasonic Imaging, 16, 265-287 (1994)
[33] Abd-Elmoniem, K. Z.; Youssef, A. B.M.; Kadah, Y. M., Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion, IEEE Transactions on Biomedical Engineering, 49, 997-1014 (2002)
[34] Loizou, C. P.; Pattichis, C. S.; Christodoulou, C. I.; Istepanian, R. S.H.; Pantziaris, N.; Nicolaides, A., “Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 52, 1653-1669 (2005)
[35] Kuan, D. T.; Sawchuk, A. A.; Strand, T. C.; Chavel, P., Adaptive noise smoothing filter for images with signal-dependent noise, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-7, 165-177 (1985)
[36] Lee, J. S., Digital image enhancement and noise filtering by use of local statistics, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-2, 165-168 (1980)
[37] Frost, V. S.; Stiles, J. A.; Shanmugan, K. S.; Holtzman, J. C., A model for radar images and its application to adaptive digital filtering of multiplicative noise, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4, 157-166 (1982)
[38] Lopes, A.; Touzi, R.; Nezry, E., Adaptive speckle filters and scene heterogeneity, IEEE Transaction on Geoscience and Remote Sensing, 28, 992-1000 (1990)
[39] Dutt, V.; Greenleaf, J. F., Adaptive speckle reduction filter for log-compressed B-scan images, IEEE Transactions on Medical Imaging, 15, 802-813 (1996)
[40] Dong, Y.; Milne, A. K.; Forster, B. C., Toward edge sharpening: a SAR speckle filtering algorithm, IEEE Transactions on Geoscience and Remote Sensing, 39, 851-863 (2001)
[41] Caliope, P. B.; Medeiros, F. N.S.; Marques, R. C.P.; Costa, R. C.S., A comparison of filters for ultrasound images, Telecommunications and Networking, 3124, 1035-1040 (2004)
[42] Gonzalez, R. C.; Woods, R. E., Digital Image Processing (2002), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ
[43] Prager, R. W.; Gee, A. H.; Treece, G. M.; Berman, L. H., Analysis of speckle in ultrasound images using fractional order statistics and the homodyned \(k\)-distribution, Ultrasonics, 40, 133-137 (2002)
[44] Y. Yu, J.A. Molloy, S.T. Acton, Three-dimensional speckle reducing anisotropic diffusion, in: Conference Record of the 37th Asilomar Conference on Signals, Systems and Computers, vol. 2, 2003, pp. 1987-1991.; Y. Yu, J.A. Molloy, S.T. Acton, Three-dimensional speckle reducing anisotropic diffusion, in: Conference Record of the 37th Asilomar Conference on Signals, Systems and Computers, vol. 2, 2003, pp. 1987-1991.
[45] Guo, Y. H.; Cheng, H. D.; Tian, J. W.; Zhang, Y. T., A novel approach to speckle reduction in ultrasound imaging, Ultrasound in Medicine and Biology, 35, 4, 628-640 (2009)
[46] Evans, A. N.; Nixon, M. S., Mode filtering to reduce ultrasound speckle for feature extraction, IEEE Proceedings on Vision Image and Signal Processing, 142, 87-94 (1995)
[47] Loupas, T.; McDicken, W. N.; Allan, P. L., An adaptive weighted median filter for speckle suppression in medical ultrasonic images, IEEE Transactions on Circuits and Systems, 36, 129-135 (1989)
[48] R.N. Czerwinski, D.L. Jones, W.D. O’Brien Jr., Ultrasound speckle reduction by directional median filtering, in: International Conference on Image Processing, vol. 1, 1995, pp. 358-361.; R.N. Czerwinski, D.L. Jones, W.D. O’Brien Jr., Ultrasound speckle reduction by directional median filtering, in: International Conference on Image Processing, vol. 1, 1995, pp. 358-361.
[49] Kuan, D.; Sawchuk, A.; Strand, T.; Chavel, P., Adaptive restoration of images with speckle, IEEE Transactions on Acoustics, Speech, and Signal Processing, 35, 373-383 (1987)
[50] Medeiros, F. N.S.; Mascarenhas, N. D.A.; Costa, L. F., Evaluation of speckle noise MAP filtering algorithms applied to SAR images, International Journal of Remote Sensing, 24, 5197-5218 (2003)
[51] A. Lopes, E. Nezry, R. Touzi, H. Laur, Maximum a posteriori speckle filtering and first order texture models in SAR images, in: Geoscience and Remote Sensing Symposium, 1990, pp. 2409-2412.; A. Lopes, E. Nezry, R. Touzi, H. Laur, Maximum a posteriori speckle filtering and first order texture models in SAR images, in: Geoscience and Remote Sensing Symposium, 1990, pp. 2409-2412.
[52] Perona, P.; Malik, J., Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 629-639 (1990)
[53] Yu, Y. J.; Acton, S. T., Speckle reducing anisotropic diffusion, IEEE Transactions on Image Processing, 11, 1260-1270 (2002)
[54] Xiao, C. Y.; Su, Z.; Chen, Y. Z., A diffusion stick method for speckle suppression in ultrasonic images, Pattern Recognition Letters, 25, 1867-1877 (2004)
[55] Z. Yang, M.D. Fox, Multiresolution nonhomogeneous anisotropic diffusion approach to enhance ultrasound breast tumor image legibility, in: Proceedings of SPIE, Medical Imaging 2004: Ultrasonic Imaging and Signal Processing, vol. 5373, 2004, pp. 98-107.; Z. Yang, M.D. Fox, Multiresolution nonhomogeneous anisotropic diffusion approach to enhance ultrasound breast tumor image legibility, in: Proceedings of SPIE, Medical Imaging 2004: Ultrasonic Imaging and Signal Processing, vol. 5373, 2004, pp. 98-107.
[56] R. Wang, J.L. Lin, D.Y. Li, T.F. Wang, Edge enhancement and filtering of medical ultrasonic images using a hybrid method, in: The First International Conference on Bioinformatics and Biomedical Engineering, 2007, pp. 876-879.; R. Wang, J.L. Lin, D.Y. Li, T.F. Wang, Edge enhancement and filtering of medical ultrasonic images using a hybrid method, in: The First International Conference on Bioinformatics and Biomedical Engineering, 2007, pp. 876-879.
[57] Crimmins, T. R., Geometric filter for speckle reduction, Optical Engineering, 25, 5, 651-654 (1986)
[58] Chen, Y.; Yin, R. M.; Flynn, R.; Broschat, S., Aggressive region growing for speckle reduction in ultrasound images, Pattern Recognition Letters, 24, 677-691 (2003)
[59] Czerwinski, R. N.; Jones, D. L.; O’Brien, W. D., Detection of lines and boundaries in speckle images—application to medical ultrasound, IEEE Transactions on Medical Imaging, 18, 126-136 (1999)
[60] Abramovich, F.; Sapatinas, T.; Silverman, B. W., Wavelet thresholding via a Bayesian approach, Journal of the Royal Statistics Society, 60, 725-749 (1998) · Zbl 0910.62031
[61] Khare, A.; Tiwary, U. S., Soft-thresholding for denoising of medical images—a multiresolution approach, International Journal of Wavelets Multiresolution and Information Processing, 3, 477-496 (2005) · Zbl 1077.92038
[62] Donoho, D. L., De-noising by soft-thresholding, IEEE Transactions on Information Theory, 41, 613-627 (1995) · Zbl 0820.62002
[63] Zha, D. F.; Qiu, T. S., A new algorithm for shot noise removal in medical ultrasound images based on alpha-stable model, International Journal of Adaptive Control and Signal Processing, 20, 251-263 (2006) · Zbl 1126.92031
[64] H.A.M. Mohamad Forouzanfar, M. Dehghani, Speckle reduction in medical ultrasound images using a new multiscale bivariate Bayesian MMSE-based method, in: IEEE 15th SIU on Signal Processing and Communications Applications, 2007, pp. 1-4.; H.A.M. Mohamad Forouzanfar, M. Dehghani, Speckle reduction in medical ultrasound images using a new multiscale bivariate Bayesian MMSE-based method, in: IEEE 15th SIU on Signal Processing and Communications Applications, 2007, pp. 1-4.
[65] Gupta, S.; Chauhan, R. C.; Saxena, S. C., Locally adaptive wavelet domain Bayesian processor for denoising medical ultrasound images using speckle modeling based on Rayleigh distribution, IEEE Proceedings on Vision Image and Signal Processing, 152, 129-135 (2005)
[66] Gupta, S.; Chauhan, R. C.; Sexana, S. C., Wavelet-based statistical approach for speckle reduction in medical ultrasound images, Medical & Biological Engineering & Computing, 42, 189-192 (2004)
[67] Gupta, S.; Kaur, L.; Chauhan, R. C.; Saxena, S. C., A versatile technique for visual enhancement of medical ultrasound images, Digital Signal Processing, 17, 542-560 (2007)
[68] Gupta, S.; Chauhan, R. C.; Saxena, S. C., Robust non-homomorphic approach for speckle reduction in medical ultrasound images, Medical & Biological Engineering & Computing, 43, 189-195 (2005)
[69] Achim, A.; Bezerianos, A.; Tsakalides, P., Novel Bayesian multiscale method for speckle removal in medical ultrasound images, IEEE Transactions on Medical Imaging, 20, 772-783 (2001)
[70] Pizurica, A.; Philips, W.; Lemahieu, I.; Acheroy, M., A versatile wavelet domain noise filtration technique for medical imaging, IEEE Transactions on Medical Imaging, 22, 323-331 (2003)
[71] Xie, H.; Pierce, L. E.; Ulaby, F. T., SAR speckle reduction using wavelet denoising and Markov random field modeling, IEEE Transactions on Geoscience and Remote Sensing, 40, 2196-2212 (2002)
[72] Pizurica, A.; Wink, A. M.; Vansteenkiste, E.; Philips, W.; Roerdink, J., A review of wavelet denoising in MRI and ultrasound brain imaging, Current Medical Imaging Reviews, 2, 247-260 (2006)
[73] Li, B.; Zhuang, T. G., A speckle suppression method based on nonlinear threshold wavelet packet in ultrasound images, Journal of Infrared and Millimeter Waves, 20, 307-310 (2001)
[74] Hao, X. H.; Gao, S. K.; Gao, X. R., A novel multiscale nonlinear thresholding method for ultrasonic speckle suppressing, IEEE Transactions on Medical Imaging, 18, 787-794 (1999)
[75] Fourati, W.; Kammoun, F.; Bouhlel, M. S., Medical image denoising using wavelet thresholding, Journal of Testing and Evaluation, 33, 364-369 (2005)
[76] Chang, S. G.; Yu, B.; Vetterli, M., Spatially adaptive wavelet thresholding with context modelling for image denoising, IEEE Transactions on Image Processing, 9, 1522-1531 (2000) · Zbl 0962.94027
[77] J.R. Sveinsson, J.A. Benediktsson, Speckle reduction and enhancement of SAR images in the wavelet domain, in: International Geoscience and Remote Sensing Symposium, IGARSS ’96, ‘Remote Sensing for a Sustainable Future’, vol. 13, 1996, pp.725-735.; J.R. Sveinsson, J.A. Benediktsson, Speckle reduction and enhancement of SAR images in the wavelet domain, in: International Geoscience and Remote Sensing Symposium, IGARSS ’96, ‘Remote Sensing for a Sustainable Future’, vol. 13, 1996, pp.725-735.
[78] Y. Rangsanseri, W. Prasongsook, Speckle reduction using Wiener filtering in wavelet domain, in: Proceedings of the Ninth International Conference on Neural Information Processing, ICONIP ’02, vol. 2, 2002, pp. 792-795.; Y. Rangsanseri, W. Prasongsook, Speckle reduction using Wiener filtering in wavelet domain, in: Proceedings of the Ninth International Conference on Neural Information Processing, ICONIP ’02, vol. 2, 2002, pp. 792-795.
[79] Yong, Y.; Croitoru, M. M.; Bidani, A.; Zwischenberger, J. B.; Clark, J. W., Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images, IEEE Transactions on Medical Imaging, 25, 297-311 (2006)
[80] Behar, V.; Adam, D.; Friedman, Z., A new method of spatial compounding imaging, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 41, 377-384 (2003)
[81] Adam, D.; Beilin-Nissan, S.; Friedman, Z.; Behar, V., The combined effect of spatial compounding and nonlinear filtering on the speckle reduction in ultrasound images, Ultrasonics, 44, 166-181 (2006)
[82] Stetson, P.; Graham, F.; Macovski, A., Lesion contrast enhancement in medical ultrasound imaging, IEEE Transactions on Medical Imaging, 16, 416-425 (1997)
[83] Robert Rohlinga, A. G.a. L.B., Three-dimensional spatial compounding of ultrasound images, Medical Image Analysis, 1, 177-193 (1997)
[84] Shankar, P.; Piccoli, C.; Reid, J.; Forsberg, J.; Goldberg, B., Application of the compound probability density function for characterization of breast masses in ultrasound B scans, Physics in Medicine and Biology, 50, 10, 2241-2248 (2005)
[85] Shi, X. J.; Cheng, H. D., A simple and effective histogram equalization approach to image enhancement, Digital Signal Processing, 14, 158-170 (2004)
[86] Awad, J.; Abdel-Galil, T. K.; Salama, M. M.A.; Tizhoosh, H.; Fenster, A.; Rizkalla, K.; Downey, D. B., Prostate’s boundary detection in transrectal ultrasound images using scanning technique, IEEE Conference on Electrical and Computer Engineering, 2, 1199-1202 (2003)
[87] Cheng, H. D.; Jiang, X. H.; Sun, Y.; Wang, J. L., Color image segmentation: advances and prospects, Pattern Recognition, 34, 12, 2259-2281 (2001) · Zbl 0991.68137
[88] Littmann, E.; Ritter, H., Adaptive color segmentation—a comparison of neural and statistical methods, IEEE Transactions on Neural Networks, 8, 1, 175-185 (1997)
[89] J. Segyeong, K.M. Woo, C.K. Hee, Computer-aided diagnosis of solid breast nodules on ultrasound with digital image processing and artificial neural network, in: 26th Annual International Conference of the Engineering in Medicine and Biology Society, vol. 1, 2004, pp. 1397-1400.; J. Segyeong, K.M. Woo, C.K. Hee, Computer-aided diagnosis of solid breast nodules on ultrasound with digital image processing and artificial neural network, in: 26th Annual International Conference of the Engineering in Medicine and Biology Society, vol. 1, 2004, pp. 1397-1400.
[90] Horsch, K.; Giger, M. L.; Venta, L. A.; Vyborny, C. J., Computerized diagnosis of breast lesions on ultrasound, Medical Physics, 29, 2, 157-164 (2002)
[91] Horsch, K.; Giger, M. L.; Venta, L. A.; Vyborny, C. J., Automatic segmentation of breast lesions on ultrasound, Medical Physics, 28, 8, 1652-1659 (2001)
[92] Chen, D. R.; Chang, R. F.; Huang, Y. L., Computer-aided diagnosis applied to us of solid breast nodules by using neural networks, Radiology, 213, 407-412 (1999)
[93] Chang, R. F.; Wu, W. J.; Moon, W. K.; Chen, W. M.; Lee, W.; Chen, D. R., Segmentation of breast tumor in three-dimensional ultrasound images using three-dimensional discrete active contour model, Ultrasound in Medicine and Biology, 29, 1571-1581 (2003)
[94] Otsu, N., A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9, 1, 62-66 (1979)
[95] Kass, M.; Witkin, A.; Terzopoulos, D., Snakes—active contour models, International Journal of Computer Vision, 1, 4, 321-331 (1987)
[96] Chen, D. R.; Chang, R. F.; Wu, W. J.; Moon, W. K.; Wu, W. L., 3-D breast ultrasound segmentation using active contour model, Ultrasound in Medicine and Biology, 29, 7, 1017-1026 (2003)
[97] Madabhushi, A.; Metaxas, D. N., Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions, IEEE Transactions on Medical Imaging, 22, 2, 55-169 (2003)
[98] Sarti, A.; Corsi, C.; Mazzini, E.; Lamberti, C., Maximum likelihood segmentation of ultrasound images with Rayleigh distribution, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 52, 6, 947-960 (2005)
[99] Chen, C. M.; Lu, H. H.; Lin, Y. C., An early vision-based snake model for ultrasound image segmentation, Ultrasound in Medicine and Biology, 26, 2, 273-285 (2000)
[100] Chang, R. F.; Wu, W.-J.; Tseng, C.-C.; Chen, D.-R.; Moon, W., 3-D snake for US in margin evaluation for malignant breast tumor excision using mammotome, IEEE Transactions on Information Technology in Biomedicine, 7, 3, 197-201 (2003)
[101] H.D. Cheng, L. Hu, J. Tian, L. Sun, A novel Markov random field segmentation algorithm and its application to breast ultrasound image analysis, in: The Sixth International Conference on Computer Vision, Pattern Recognition and Image Processing, Salt Lake City, USA, 2005.; H.D. Cheng, L. Hu, J. Tian, L. Sun, A novel Markov random field segmentation algorithm and its application to breast ultrasound image analysis, in: The Sixth International Conference on Computer Vision, Pattern Recognition and Image Processing, Salt Lake City, USA, 2005.
[102] Noble, J. A.; Boukerroui, D., Ultrasound image segmentation: a survey, IEEE Transactions on Medical Imaging, 25, 8, 987-1010 (2006)
[103] Xiao, G. F.; Brady, M.; Noble, J. A.; Zhang, Y. Y., Segmentation of ultrasound B-mode images with intensity inhomogeneity correction, IEEE Transactions on Medical Imaging, 21, 1, 48-57 (2002)
[104] Boukerroui, D.; Basset, O.; Gu, N.; Baskurt, A., Multiresolution texture based adaptive clustering algorithm for breast lesion segmentation, European Journal of Ultrasound, 8, 135-144 (1998)
[105] Boukerroui, D.; Baskurt, A.; Noble, J. A.; Basset, O., Segmentation of ultrasound images-multiresolution 2D and 3D algorithm based on global and local statistics, Pattern Recognition Letters, 24, 4-5, 779-790 (2003)
[106] L.A. Christopher, E.J. Delp, C.R. Meyer, P.L. Carson, 3-D Bayesian ultrasound breast image segmentation using the EM/MPM algorithm, in: Proceedings of the 2002 IEEE International Symposium on Biomedical Imaging, 2002, pp. 86-89.; L.A. Christopher, E.J. Delp, C.R. Meyer, P.L. Carson, 3-D Bayesian ultrasound breast image segmentation using the EM/MPM algorithm, in: Proceedings of the 2002 IEEE International Symposium on Biomedical Imaging, 2002, pp. 86-89.
[107] Chen, D. R.; Chang, R. F.; Wu, W. J.; Moon, W. K.; Wu, W. L., 3-D breast ultrasound segmentation using active contour model, Ultrasound in Medicine and Biology, 29, 1017-1026 (2003)
[108] Ashton, E. A.; Parker, K. J., Multiple resolution Bayesian segmentation of ultrasound images, Ultrasonic Imaging, 17, 4, 291-304 (1995)
[109] Chen, D. R.; Chang, R. F.; Kuo, W. J.; Chen, M. C.; Huang, Y. L., Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks, Ultrasound in Medicine and Biology, 28, 10, 1301-1310 (2002)
[110] Huang, Y. L.; Chen, D. R., Watershed segmentation for breast tumor in 2-D sonography, Ultrasound in Medicine and Biology, 30, 625-632 (2004)
[111] Cherkassky, V. S.; Mulier, F., Learning from Data: Concepts, Theory, and Methods (1998), Wiley: Wiley New York, NY, USA · Zbl 0960.62002
[112] Li, H.; Wang, Y.; Liu, K. J.R.; Lo, S. B.; Freedman, M. T., Computerized radiographic mass detection—part II: lesion site selection by morphological enhancement and contextual segmentation, IEEE Transactions on Medical Imaging, 20, 4, 302-313 (2001)
[113] K. Drukker, C.A. Sennett, M.L. Giger, The effect of image quality on the appearance of lesions on breast ultrasound: implications for CADx, in: Proceedings of SPIE, Medical Imaging 2007: Computer-Aided Diagnosis, vol. 6514, 2007, p. 65141E.; K. Drukker, C.A. Sennett, M.L. Giger, The effect of image quality on the appearance of lesions on breast ultrasound: implications for CADx, in: Proceedings of SPIE, Medical Imaging 2007: Computer-Aided Diagnosis, vol. 6514, 2007, p. 65141E.
[114] Horsch, K.; Ceballos, A. F.; Giger, M. L.; Bonta, I. R.; Huo, Z.; Vyborny, C. J.; Hendrick, E. R.; Lan, L., Optimizing feature selection across a multimodality database in computerized classification of breast lesions, Progress in biomedical optics and imaging, 3, 22, 986-992 (2002)
[115] Tian, J. W.; Sun, L. T.; Guo, Y. H.; Cheng, H. D.; Zhang, Y. T., Computerized-aid diagnosis of breast mass using ultrasound image, Medical Physics, 34, 3158-3164 (2007)
[116] Mogatadakala, K.; Donohue, K.; Piccoli, C.; Forsberg, F., Detection of breast lesion regions in ultrasound images using wavelets and order statistics, Medical Physics, 33, 4, 840-849 (2006)
[117] Drukker, K.; Giger, M.; Mendelson, E., Computerized analysis of shadowing on breast ultrasound for improved lesion detection, Medical Physics, 30, 7, 1833-1842 (2003)
[118] Shankar, P., The use of the compound probability density function in ultrasonic tissue characterization, Physics in Medicine and Biology, 49, 6, 1007-1015 (2004)
[119] Stavros, A.; Thickman, D.; Rapp, C.; Dennis, M.; Parker, S.; Sisney, G., Solid breast nodules—use of sonography to distinguish benign and malignant lesions, Radiology, 196, 1, 123-134 (1995)
[120] Shankar, P.; Dumane, V.; George, T.; Piccoli, C.; Reid, J.; Forsberg, F.; Goldberg, B., Classification of breast masses in ultrasonic B scans using Nakagami and \(K\) distribution, Physics in Medicine and Biology, 48, 14, 2229-2240 (2003)
[121] Chen, S.; Cheung, Y.; Su, C.; Chen, M.; Hwang, T.; Hsueh, S., Analysis of sonographic features for the differentiation of benign and malignant breast tumors of different sizes, Ultrasound in Medicine and Biology, 23, 2, 188-193 (2004)
[122] Gefen, S.; Tretiak, O.; Piccoli, C.; Donohue, K.; Petropulu, A.; Shankar, P.; Dumane, V.; Huang, L.; Kutay, M.; Genis, V.; Forsberg, F.; Reid, J.; Goldberg, B., ROC analysis of ultrasound tissue characterization classifiers for breast cancer diagnosis, IEEE Tractions on Medical Imaging, 22, 2, 170-177 (2003)
[123] Sehgal, C.; Cary, T.; Kangas, S.; Weinstein, S.; Schultz, S.; Arger, P.; Conant, E., Computer-based margin analysis of breast sonography for differentiating malignant and benign masses, Journal of Ultrasound in Medicine, 23, 9, 1201-1209 (2004)
[124] Shankar, P.; Dumane, V.; Piccoli, C.; Reid, J.; Forsberg, F.; Goldberg, B., Computer-aided classification of breast masses in ultrasonic B-scans using a multiparameter approach, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 50, 8, 1002-1009 (2003)
[125] Chen, D.; Chang, R.; Huang, Y., Computer-aided diagnosis applied to US of solid breast nodules by using neural networks, Radiology, 213, 2, 407-412 (1999)
[126] Chen, D. R.; Chang, R. F.; Huang, Y. L., Breast cancer diagnosis using self-organizing map for sonography, Ultrasound in Medicine and Biology, 26, 3, 405-411 (2000)
[127] Chen, D.; Chang, R.; Huang, Y.; Chou, Y.; Tiu, C.; Tsai, P., Texture analysis of breast tumors on sonograms, Seminars in Ultrasound CT and MRI, 21, 4, 308-316 (2000)
[128] P.C. Bhat, H.B. Prosper, Bayesian Neural Networks, in: Statistical Problems in Particle Physics, Astrophysics and Cosmology: Proceedings of PHYSTAT05, 2006, pp. 151-155.; P.C. Bhat, H.B. Prosper, Bayesian Neural Networks, in: Statistical Problems in Particle Physics, Astrophysics and Cosmology: Proceedings of PHYSTAT05, 2006, pp. 151-155.
[129] Drukker, K.; Giger, M. L.; Vyborny, C. J.; Mendelson, E. B., Computerized detection and classification of cancer on breast ultrasound 1, Academic Radiology, 11, 5, 526-535 (2004)
[130] K. Drukker, D.C. Edwards, M.L. Giger, R.M. Nishikawa, C.E. Metz, Computerized detection and 3-way classification of breast lesions on ultrasound images, in: Proceedings of SPIE, Medical Imaging 2004: Image Processing, vol. 5370, 2004, pp. 1034-1041.; K. Drukker, D.C. Edwards, M.L. Giger, R.M. Nishikawa, C.E. Metz, Computerized detection and 3-way classification of breast lesions on ultrasound images, in: Proceedings of SPIE, Medical Imaging 2004: Image Processing, vol. 5370, 2004, pp. 1034-1041.
[131] Quinlan, J. R., C4. 5: Programs for Machine Learning, vol. 95 (1993), Morgan Kaufmann: Morgan Kaufmann Los Altos, CA
[132] Kuo, W.; Chang, R.; Chen, D.; Lee, C., Data mining with decision trees for diagnosis of breast tumor in medical ultrasonic images, Breast Cancer Research and Treatment, 66, 1, 51-57 (2001)
[133] Huang, Y. L.; Chen, D. R., Support vector machines in sonography application to decision making in the diagnosis of breast cancer, Clinical Imaging, 29, 3, 179-184 (2005)
[134] Kuo, W.; Chang, R.; Lee, C.; Moon, W.; Chen, D., Retrieval technique for the diagnosis of solid breast tumors on sonogram, Ultrasound in Medicine and Biology, 28, 7, 903-909 (2002)
[135] Berg, W.; Blume, J.; Cormack, J.; Mendelson, E., Operator dependence of physician-performed whole-breast US: lesion detection and characterization, Radiology, 241, 2, 355-365 (2006)
[136] Cho, N.; Moon, W.; Cha, J.; Kim, S.; Han, B.; Kim, E.; Kim, M.; Chung, S.; Choi, H.; Im, J., Differentiating benign from malignant solid breast masses: comparison of two-dimensional and three-dimensional US, Radiology, 240, 1, 26-32 (2006)
[137] Chen, C. C.; Daponte, J. S.; Fox, M. D., Fractal feature analysis and classification in medical imaging, IEEE Transactions on Medical Imaging, 8, 2, 133-142 (1989)
[138] Hong, A.; Rosen, E.; Soo, M.; Baker, J., BI-RADS for sonography: positive and negative predictive values of sonographic features, American Journal of Roentgenology, 184, 4, 1260-1265 (2005)
[139] Garra, B.; Krasner, B.; Horii, S.; Ascher, S.; Mun, S.; Zeman, R., Improving the distinction between benign and malignant breast lesions: the value of sonographic texture analysis, Ultrasonic Imaging, 15, 4, 267-285 (1993)
[140] M. Giger, Y. Yuan, H. Li, K. Drukker, W. Chen, L. Lan, K. Ho, Progress in breast CADx, in: Biomedical Imaging: Fourth IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2007, pp. 508-511.; M. Giger, Y. Yuan, H. Li, K. Drukker, W. Chen, L. Lan, K. Ho, Progress in breast CADx, in: Biomedical Imaging: Fourth IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2007, pp. 508-511.
[141] Drukker, K.; Giger, M.; Metz, C., Robustness of computerized lesion detection and classification scheme across different breast US platforms, Radiology, 238, 1, 834-840 (2006)
[142] Mainiero, M.; Goldkamp, A.; Lazarus, E.; Livingston, L.; Koelliker, S.; Schepps, B.; Mayo-Smith, W., Characterization of breast masses with sonography—can biopsy of some solid masses be deferred?, Journal of Ultrasound in Medicine, 24, 2, 161-167 (2005)
[143] Paulinelli, R.; Freitas, R.; Moreira, M.; de Moraes, V.; Bernardes, J.; Vidal, C.; Ruiz, A.; Lucato, M., Risk of malignancy in solid breast nodules according to their sonographic features, Journal of Ultrasound in Medicine, 24, 5, 635-641 (2005)
[144] Kutay, M.; Petropulu, A.; Piccoli, C., Breast tissue characterization based on modeling of ultrasonic echoes using the power-law shot noise model, Pattern Recognition Letters, 24, 4-5, 741-756 (2003)
[145] Kupinski, M. A.; Edwards, D. C.; Giger, M. L.; Metz, C. E., Ideal observer approximation using Bayesian classification neural networks, IEEE Transactions on Medical Imaging, 20, 9, 886-899 (2001)
[146] ACR Standards 2000-2001 (2000), American College of Radiology: American College of Radiology Reston, VA
[147] Yang, W.; Dempsey, P., Diagnostic breast ultrasound: current status and future directions, Radiologic Clinics of North America, 45, 845-861 (2007)
[148] Cheng, H. D.; Guo, Y., A new neutrosophic approach to image thresholding, New Mathematics and Natural Computation, 4, 291-308 (2008)
[149] M. Oelze, W. O’Brien, J. Zachary, 11B-4 quantitative ultrasound assessment of breast cancer using a multiparameter approach, in: Ultrasonics Symposium, 2007, pp. 981-984.; M. Oelze, W. O’Brien, J. Zachary, 11B-4 quantitative ultrasound assessment of breast cancer using a multiparameter approach, in: Ultrasonics Symposium, 2007, pp. 981-984.
[150] K. Zheng, T.F. Wang, J.L. Lin, D.Y. Li, Recognition of breast ultrasound images using a hybrid method, in: IEEE/ICME International Conference on Complex Medical Engineering, 2007, pp. 640-643.; K. Zheng, T.F. Wang, J.L. Lin, D.Y. Li, Recognition of breast ultrasound images using a hybrid method, in: IEEE/ICME International Conference on Complex Medical Engineering, 2007, pp. 640-643.
[151] Ikedo, Y.; Fukuoka, D.; Hara, T., Development of a fully automatic scheme for detection of masses in whole breast ultrasound images, Medical Physics, 34, 4378-4388 (2007)
[152] Shen, W.; Chang, R.; Moon, W.; Chou, Y.; Huang, C., Breast ultrasound computer-aided diagnosis using BI-RADS features, Academic Radiology, 14, 928-939 (2007)
[153] Anderson, B.; Shyyan, R.; Eniu, A.; Smith, R.; Yip, C., Breast cancer in limited-resource countries: an overview of the breast health global initiative 2005 guidelines, The Breast Journal, 12, S3-15 (2006)
[154] Park, J. M.; Song, W. J.; Pearlman, W. A., Speckle filtering of SAR images based on adaptive windowing, IEEE Proceedings on Visual Image Processing, 146, 191-197 (1999)
[155] L. Gagnon, A. Jouan, Speckle filtering of SAR images—a comparative study between complex-wavelet-based and standard filters, in: Proceedings of SPIE: Conference on Wavelet Applications in Signal and Image Processing, vol. 3169, 1997.; L. Gagnon, A. Jouan, Speckle filtering of SAR images—a comparative study between complex-wavelet-based and standard filters, in: Proceedings of SPIE: Conference on Wavelet Applications in Signal and Image Processing, vol. 3169, 1997.
[156] Uncu, O.; Turksen, I. B., A novel feature selection approach: combining feature wrappers and filters, Information Sciences, 177, 449-466 (2007) · Zbl 1142.68494
[157] Kohavi, R.; John, G. H., Wrappers for feature subset selection, Artificial Intelligence, 97, 1/2, 273-324 (1997) · Zbl 0904.68143
[158] U. Fayyad, K. Irani, Multi-interval discretization of continuous-valued attributes for classification learning, in: Proceedings 13th International Joint Conference on Artificial Intelligence, 1993, pp. 1022-1027.; U. Fayyad, K. Irani, Multi-interval discretization of continuous-valued attributes for classification learning, in: Proceedings 13th International Joint Conference on Artificial Intelligence, 1993, pp. 1022-1027.
[159] Holte, R. C., Very simple classification rules perform well on most commonly used datasets, Machine Learning, 11, 63-90 (1993) · Zbl 0850.68278
[160] Lachenbruch, P. A., Discriminant Analysis (1975), Hafner: Hafner New York · Zbl 0404.62033
[161] Rice, J. C., Logistic regression: an introduction, (Thompson, B., Advances in Social Science Methodology, vol. 3 (1994), JAI Press: JAI Press Greenwich, CT), 191-245
[162] Gorsuch, R. L., Factor Analysis (1983), Erlbaum: Erlbaum Hillsdale, NJ
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.