×

Contrast of a fuzzy relation. (English) Zbl 1187.68380

Summary: We address a key problem in many fields: how a structured data set can be analyzed in order to take into account the neighborhood of each individual datum. We propose representing the dataset as a fuzzy relation, associating a membership degree with each element of the relation. We then introduce the concept of interval-contrast, a means of aggregating information contained in the immediate neighborhood of each element of the fuzzy relation. The interval-contrast measures the range of membership degrees present in each neighborhood. We use interval-contrasts to define the necessary properties of a contrast measure, construct several different local contrast and total contrast measures that satisfy these properties, and compare our expressions to other definitions of contrast appearing in the literature. Our theoretical results can be applied to several different fields. In an Appendix A, we apply our contrast expressions to photographic images.

MSC:

68T05 Learning and adaptive systems in artificial intelligence
68U10 Computing methodologies for image processing
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adel, M.; Zuwala, D.; Rasigni, M.; Bourennane, S., Filtering noise on mammographic phantom images using local contrast modification functions, Image Vis. Comput., 26, 1219-1229 (2008)
[2] Amo, A.; Montero, J.; Molina, E., Representation of consistent recursive rules, Euro. J. Oper. Res., 130, 29-53 (2001) · Zbl 1137.03322
[3] Baczyński, M.; Jayaram, B., Fuzzy Implications (Studies in Fuzziness and Soft Computing) (2008), Springer: Springer Berlin
[6] Burillo, P.; Bustince, H., Entropy on intutionistic fuzzy sets and on interval-valued fuzzy sets, Fuzzy Sets Syst., 78, 305-316 (1996) · Zbl 0872.94061
[7] Bustince, H., Construction of intutionistic fuzzy relations with predetermined properties, Fuzzy Sets Syst., 109, 379-403 (2000) · Zbl 0951.03047
[8] Bustince, H.; Burillo, P.; Soria, F., Automorphisms, negations and implication operators, Fuzzy Sets Syst., 134, 209-229 (2003) · Zbl 1010.03017
[9] Bustince, H.; Burillo, P., Mathematical analysis of interval-valued fuzzy relations: application to approximate reasoning, Fuzzy Sets Syst., 113, 205-219 (2000) · Zbl 0948.03050
[10] Bustince, H.; Burillo, P., Structures on intutionistic fuzzy relations, Fuzzy Sets Syst., 78, 293-303 (1996) · Zbl 0875.04006
[12] Bustince, H.; Montero, J.; Pagola, M.; Barrenechea, E.; Gómez, D., A survey of interval-valued fuzzy sets, (Pedrycz, W.; Skowron, A.; Kreinovich, V., Handbook of Granular Computing (2008), Wiley: Wiley New Jersey) · Zbl 1371.03076
[13] Bustince, H.; Pagola, M.; Barrenechea, E., Construction of fuzzy indices from fuzzy DI-subsethood measures: application to the global comparison of images, Inform. Sci., 177, 906-929 (2007) · Zbl 1112.94033
[14] Bustince, H.; Mohedano, V.; Barrenechea, E.; Pagola, M., Definition and construction of fuzzy DI-subsethood measures, Inform. Sci., 176, 3190-3231 (2006) · Zbl 1104.03052
[15] Bustince, H.; Barrenechea, E.; Pagola, M., Generation of interval-valued fuzzy and Atanassov’s intuitionistic fuzzy connectives from fuzzy connectives and from \(K_\alpha\) operators: laws for conjunctions and disjunctions, amplitude, Int. J. Intell. Syst., 23, 6, 680-714 (2008) · Zbl 1140.68499
[16] Bustince, H.; Barrenechea, E.; Pagola, M.; Fernandez, J., Interval-valued fuzzy sets constructed from matrices: application to edge detection, Fuzzy Sets Syst., 160, 13, 1819-1840 (2009) · Zbl 1182.68191
[17] Bustince, H.; Montero, J.; Barrenechea, E.; Pagola, M., Semiautoduality in a restricted family of aggregation operators, Fuzzy Sets Syst., 158, 12, 1360-1377 (2007) · Zbl 1123.68125
[18] Calvo, T.; Kolesarova, A.; Komornikova, M.; Mesiar, R., Aggregation operators: properties, classes and construction methods, (Calvo, T.; Mayor, G.; Mesiar, R., Aggregation Operators New Trends and Applications (2002), Physica-Verlag: Physica-Verlag Heidelberg), 3-104 · Zbl 1039.03015
[19] Chen, Y. F.; Chan, Y. K.; Huang, C. C., A multiple-level visual secret-sharing scheme without image size expansion, Inform. Sci., 177, 4696-4710 (2007) · Zbl 1142.94368
[20] Cheng, H. D.; Chen, C. H., Image segmentation using fuzzy homogeneity criterion, Inform. Sci., 98, 237-262 (1997)
[21] Cheng, H. D.; Xu, H., A novel fuzzy logic approach to mammogram contrast enhancement, Inform. Sci., 148, 177-184 (2002) · Zbl 1012.92023
[22] Cheng, H. D.; Xue, M.; Shi, X. J., Contrast enhancement based on a novel homogeneity measurement, Pattern Recognition, 36, 2687-2697 (2003)
[23] Cutello, V.; Montero, J., Recursive connective rules, Int. J. Intell. Syst., 14, 3-20 (1999) · Zbl 0955.68103
[24] Deschrijver, G.; Kerre, E. E., On the composition of intuitionistic fuzzy relations, Fuzzy Sets Syst., 136, 333-361 (2003) · Zbl 1028.03047
[25] Deschrijver, G.; Cornelis, C.; Kerre, E. E., On the representation of intuitionistic fuzzy T-norms and T-conorms, IEEE Trans. Fuzzy Syst., 12, 1, 45-61 (2004)
[26] Dubois, D.; Ostasiewicz, W.; Prade, H., Fuzzy sets: history and basic notions, (Dubois, D.; Prade, H., Fundamentals of Fuzzy Sets (2000), Kluwer: Kluwer Boston, MA), 21-124 · Zbl 0967.03047
[27] Friedman, M.; Schneider, M.; Kandel, A., The use of Weighted fuzzy expected value (WFEV) in fuzzy expert systems, Fuzzy Sets Syst., 31, 37-45 (1989) · Zbl 0676.68061
[28] Fodor, J.; Roubens, M., Fuzzy preference modelling and multicriteria decision support, (Theory and Decision Library (1994), Kluwer Academic Publishers) · Zbl 0827.90002
[30] Ibáñez, O.; Ballerini, L.; Cordón, O.; Damas, S.; Santamara, J., An experimental study on the applicability of evolutionary algorithms to craniofacial superimposition in forensic identification, Inform. Sci., 179, 3998-4028 (2009)
[31] Jahromi, M. Z.; Parvinnia, E.; John, R., A method of learning weighted similarity function to improve the performance of nearest neighbor, Inform. Sci., 179, 17, 2964-2973 (2009) · Zbl 1194.68190
[32] Jenei, S., A more efficient method for defining fuzzy connectives, Fuzzy Sets Syst., 90, 25-35 (1997) · Zbl 0922.03074
[33] Jimenez-Sanchez, A. R.; Mendiola-Santibanez, J. D.; Terol-Villalobos, I. R.; Herrera-Ruiz, G.; Vargas-Vazquez, D.; Garcia-Escalante, J. J.; Lara-Guevara, A., Morphological background detection and enhancement of images with poor lighting, IEEE Trans. Image Process., 18, 3, 613-623 (2009) · Zbl 1371.94179
[34] Kandel, A.; Byatt, W. J., Fuzzy sets fuzzy algebra and fuzzy statistics, Proc. IEEE, 66, 1619-1639 (1978)
[35] Klir, G.; Yuan, B., Fuzzy Sets and Fuzzy Logic: Theory and Applications (1995), Prentice-Hall: Prentice-Hall Upper Saddle River, NJ · Zbl 0915.03001
[36] Mas, M.; Monserrat, M.; Torrens, J.; Trillas, E., A survey on fuzzy implication functions, IEEE Trans. Fuzzy Syst., 15, 6, 1107-1121 (2007)
[37] Matz, S. C.; de Figueiredo, R. J.P., A nonlinear image contrast sharpening approach based on Munsell’s scale, IEEE Trans. Image Process., 15, 900-909 (2006)
[38] Mcilhagga, W. H.; Mullen, K. T., Contour integration with colour and luminance contrast, Vis. Res., 9, 1265-1279 (1996)
[39] Mendel, J. M., Advances in type-2 fuzzy sets and systems, Inform. Sci., 177, 84-110 (2007) · Zbl 1117.03060
[40] Mendel, J. M.; John, R. I.; Liu, F., Interval type-2 fuzzy logic systems made simple, IEEE Trans. Fuzzy Syst., 14, 808-821 (2006)
[41] Michelson, A., Studies in Optics (1927), University of Chicago Press · JFM 53.0876.08
[42] Mizumoto, M.; Tanaka, K., Some properties of fuzzy sets of type 2, Inform. Control, 31, 312-340 (1976) · Zbl 0331.02042
[43] Montero, J.; Gómez, D.; Bustince, H., On the relevance of some families of fuzzy sets, Fuzzy Sets Syst., 158, 2429-2442 (2007) · Zbl 1157.03319
[44] Pal, S. K.; Pal, N. R., Segmentation using contrast and homogeneity measures, Pattern Recognition Lett., 5, 293-304 (1987)
[45] Peli, E., Contrast in complex images, J. Opt. Soc. Am. A, 7, 10, 2032-2040 (1990)
[46] Polesel, A.; Ramponi, G.; Mathews, V. J., Image enhancement via adaptive unsharp masking, IEEE Trans. Image Process., 9, 3, 505-510 (2000)
[48] Smets, P.; Magrez, P., Implication in fuzzy logic, Int. J. Approx. Reason., 1, 327-347 (1987) · Zbl 0643.03018
[49] Tizhoosh, H. R., Observer-dependent image enhancement, (Nachtegael, M.; van der Weken, D.; van De Ville, D.; Kerre, E. E., Fuzzy Filters for Image Processing (2003), Springer: Springer Germany), 238-270
[51] Turksen, I. B., Type 2 representation and reasoning for computing with words, Fuzzy Sets Syst., 127, 17-36 (2002) · Zbl 1006.68134
[52] Van der Weken, D.; Nachtegael, M.; Kerre, E., Combining neighbourhood-based and histogram similarity measures for the design of image quality measures, Image Vis. Comput., 25, 184-195 (2007)
[53] Vlachos, I. K.; Sergiadis, G. D., Parametric indices of fuzziness for automated image enhancement, Fuzzy Sets Syst., 157, 1126-1138 (2005) · Zbl 1092.68112
[54] Whittle, P., The psychophysics of contrast brightness, (Gilchrist, A. L., Lightness, Brightness, and Transparency (1994), Lawrence Erlbaum Associates: Lawrence Erlbaum Associates Hillsdale, NJ), 35-110
[55] Zadeh, L. A., The concept of a linguistic variable and its application to approximate reasoning I, Inform. Sci., 8, 199-249 (1975) · Zbl 0397.68071
[56] Zadeh, L. A., Toward a generalized theory of uncertainty (GTU) an outline, Inform. Sci., 172, 1-40 (2005) · Zbl 1074.94021
[57] Zadeh, L. A., Is there a need for fuzzy logic?, Inform. Sci., 178, 2751-2779 (2008) · Zbl 1148.68047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.