# zbMATH — the first resource for mathematics

Small deviations of general Lévy processes. (English) Zbl 1187.60035
Let $$X=(X_t)_{t\in[0,1]}$$ be a real–valued Lévy process and let $$(\nu,\sigma^2,b)$$ be the corresponding Lévy triplet where $$b\in \mathbb R$$, $$\sigma^2\geq 0$$ and $$\nu$$ denotes the generating Lévy measure. The authors describe the behavior of the small deviation function $-\log\mathbb P(\sup_{0\leq t\leq 1}|X_t|\leq \varepsilon)$ as $$\varepsilon\to 0$$ in terms of quantities derived from $$(\nu,\sigma^2,b)$$. This is a very surprising result because, to our knowledge, this is the first example where one is able to describe the small deviation behavior for processes of a whole class. The paper contains several examples where the above mentioned quantities are calculated explicitly. Among them are Gamma processes, compound Poisson processes or the class of Lévy processes with non-zero Gaussian component. In the latter case the small deviation behavior coincides with that of the Brownian motion.

##### MSC:
 60G51 Processes with independent increments; Lévy processes 60F99 Limit theorems in probability theory
Full Text:
##### References:
  Alvarez-Andrade, S. (1998). Small deviations for the Poisson process. Statist. Probab. Lett. 37 195-201. · Zbl 0896.60015 · doi:10.1016/S0167-7152(97)00117-X  Anderson, T. W. (1955). The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Amer. Math. Soc. 6 170-176. JSTOR: · Zbl 0066.37402 · doi:10.2307/2032333 · links.jstor.org  Bertoin, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics 121 . Cambridge Univ. Press, Cambridge. · Zbl 0861.60003  Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1989). Regular Variation. Encyclopedia of Mathematics and Its Applications 27 . Cambridge Univ. Press, Cambridge. · Zbl 0667.26003  Borovkov, A. A. and Mogulskii, A. A. (1991). On probabilities of small deviations for stochastic processes [translation of Trudy Inst. Mat. (Novosibirsk) 13 (1989), Asimptot. Analiz Raspred. Sluch. Protsess., 147-168; MR1037254 (91e:60089)]. Siberian Adv. Math. 1 39-63. · Zbl 0718.60024  Ishikawa, Y. (2002). Small deviations property and its application. In Second MaphySto Confecence on Lévy Processes : Theory and Application 22 149-154. MaPhySto Publ., Aarhus.  Kuelbs, J. and Li, W. V. (1993). Metric entropy and the small ball problem for Gaussian measures. J. Funct. Anal. 116 133-157. · Zbl 0799.46053 · doi:10.1006/jfan.1993.1107  Li, W. V. and Linde, W. (1999). Approximation, metric entropy and small ball estimates for Gaussian measures. Ann. Probab. 27 1556-1578. · Zbl 0983.60026 · doi:10.1214/aop/1022677459  Li, W. V. and Shao, Q.-M. (2001). Gaussian processes: Inequalities, small ball probabilities and applications. In Stochastic Processes : Theory and Methods. Handbook of Statist. 19 533-597. North-Holland, Amsterdam. · Zbl 0987.60053  Lifshits, M. A. (1999). Asymptotic behavior of small ball probabilities. In: Probab. Theory and Math. Statist. Proc. VII International Vilnius Conference 453-468. VSP/TEV, Vilnius. · Zbl 0994.60017  Lifshits, M. A. Bibliography on small deviation probabilities. Available at http://www.proba.jussieu.fr/pageperso/smalldev/biblio.html.  Lifshits, M. A. and Linde, W. (2002). Approximation and entropy numbers of Volterra operators with application to Brownian motion. Mem. Amer. Math. Soc. 157 1-87. · Zbl 0999.47034  Lifshits, M. and Simon, T. (2005). Small deviations for fractional stable processes. Ann. Inst. H. Poincaré Probab. Statist. 41 725-752. · Zbl 1070.60042 · doi:10.1016/j.anihpb.2004.05.004 · numdam:AIHPB_2005__41_4_725_0 · eudml:77864  Linde, W. and Shi, Z. (2004). Evaluating the small deviation probabilities for subordinated Lévy processes. Stochastic Process. Appl. 113 273-287. · Zbl 1076.60039 · doi:10.1016/j.spa.2004.04.001  Linde, W. and Zipfel, P. (2008). Small deviation of subordinated processes over compact sets. Probab. Math. Statist. 28 281-304. · Zbl 1161.60015 · www.math.uni.wroc.pl  Mogulskii, A. A. (1974). Small deviations in the space of trajectories. Teor. Verojatnost. i Primenen. 19 755-765.  Rosiński, J. (2007). Tempering stable processes. Stochastic Process. Appl. 117 677-707. · Zbl 1118.60037 · doi:10.1016/j.spa.2006.10.003  Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68 . Cambridge Univ. Press, Cambridge. · Zbl 0973.60001  Simon, T. (2001). Sur les petites déviations d’un processus de Lévy. Potential Anal. 14 155-173. · Zbl 0969.60053 · doi:10.1023/A:1008711917156  Simon, T. (2003). Small deviations in p -variation for multidimensional Lévy processes. J. Math. Kyoto Univ. 43 523-565. · Zbl 1060.60047  Simon, T. (2007). Small deviations of non-Gaussian processes. Theory Stoch. Process. 13 272-280. · Zbl 1142.60317  Shmileva, E. (2006). Small ball probabilities for jump Lévy processes from the Wiener domain of attraction. Statist. Probab. Lett. 76 1873-1881. · Zbl 1104.60315 · doi:10.1016/j.spl.2006.04.037  Taylor, S. J. (1967). Sample path properties of a transient stable process. J. Math. Mech. 16 1229-1246. · Zbl 0178.19301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.