×

zbMATH — the first resource for mathematics

Quantum corrections to non-Abelian SUSY theories on orbifolds. (English) Zbl 1186.81093
Summary: We consider supersymmetric non-Abelian gauge theories coupled to hyper multiplets on five- and six-dimensional orbifolds, \(S^1/\mathbb Z_2\) and \(T^2/\mathbb Z_N\), respectively. We compute the bulk and local fixed point renormalizations of the gauge couplings. To this end we extend supergraph techniques to these orbifolds by defining orbifold compatible delta functions. We develop their properties in detail. To cancel the bulk one-loop divergences the bulk gauge kinetic terms and dimension six higher derivative operators are required. The gauge couplings renormalize at the \(\mathbb Z_N\) fixed points due to vector multiplet self interactions; the hyper multiplet renormalizes only non-\(\mathbb Z_2\) fixed points. In 6D the Wess–Zumino–Witten term and a higher derivative analogue have to renormalize in the bulk as well to preserve 6D gauge invariance.

MSC:
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R., The hierarchy problem and new dimensions at a millimeter, Phys. lett. B, 429, 263-272, (1998) · Zbl 1355.81103
[2] Antoniadis, I.; Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R., New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. lett. B, 436, 257-263, (1998)
[3] Mirabelli, E.A.; Peskin, M.E., Transmission of supersymmetry breaking from a 4-dimensional boundary, Phys. rev. D, 58, 065002, (1998)
[4] Barbieri, R.; Hall, L.J.; Nomura, Y., A constrained standard model from a compact extra dimension, Phys. rev. D, 63, 105007, (2001)
[5] Delgado, A.; Pomarol, A.; Quiros, M., Supersymmetry and electroweak breaking from extra dimensions at the TeV scale, Phys. rev. D, 60, 095008, (1999)
[6] Ghilencea, D.M.; Groot Nibbelink, S.; Nilles, H.P., Gauge corrections and fi-term in 5D KK theories, Nucl. phys. B, 619, 385-395, (2001) · Zbl 0982.81033
[7] Barbieri, R.; Hall, L.J.; Nomura, Y., A constrained standard model: effects of fayet – iliopoulos terms
[8] Groot Nibbelink, S.; Nilles, H.P.; Olechowski, M., Spontaneous localization of bulk matter fields, Phys. lett. B, 536, 270-276, (2002) · Zbl 0995.81513
[9] Barbieri, R.; Contino, R.; Creminelli, P.; Rattazzi, R.; Scrucca, C.A., Anomalies, fayet – iliopoulos terms and the consistency of orbifold field theories, Phys. rev. D, 66, 024025, (2002)
[10] Groot Nibbelink, S.; Nilles, H.P.; Olechowski, M., Instabilities of bulk fields and anomalies on orbifolds, Nucl. phys. B, 640, 171-201, (2002) · Zbl 0997.81084
[11] Marti, D.; Pomarol, A., Fayet – iliopoulos terms in 5D theories and their phenomenological implications, Phys. rev. D, 66, 125005, (2002)
[12] Dienes, K.R.; Dudas, E.; Gherghetta, T., Extra spacetime dimensions and unification, Phys. lett. B, 436, 55-65, (1998)
[13] Dienes, K.R.; Dudas, E.; Gherghetta, T., Grand unification at intermediate mass scales through extra dimensions, Nucl. phys. B, 537, 47-108, (1999) · Zbl 0948.81660
[14] Hebecker, A.; Westphal, A., Power-like threshold corrections to gauge unification in extra dimensions, Ann. phys., 305, 119-136, (2003) · Zbl 1022.81037
[15] Seiberg, N., Non-trivial fixed points of the renormalization group in six dimensions, Phys. lett. B, 390, 169-171, (1997)
[16] Berkooz, M.; Leigh, R.G.; Polchinski, J.; Schwarz, J.H.; Seiberg, N.; Witten, E., Anomalies, dualities, and topology of \(D = 6\)\(N = 1\) superstring vacua, Nucl. phys. B, 475, 115-148, (1996) · Zbl 0925.81335
[17] Danielsson, U.H.; Ferretti, G.; Kalkkinen, J.; Stjernberg, P., Notes on supersymmetric gauge theories in five and six dimensions, Phys. lett. B, 405, 265-270, (1997)
[18] Groot Nibbelink, S.; Hillenbach, M., Renormalization of supersymmetric gauge theories on orbifolds: brane gauge couplings and higher derivative operators, Phys. lett. B, 616, 125-134, (2005) · Zbl 1247.81303
[19] Georgi, H.; Grant, A.K.; Hailu, G., Brane couplings from bulk loops, Phys. lett. B, 506, 207-214, (2001) · Zbl 0977.81116
[20] von Gersdorff, G.; Quiros, M., Localized anomalies in orbifold gauge theories, Phys. rev. D, 68, 105002, (2003)
[21] Groot Nibbelink, S., Traces on orbifolds: anomalies and one-loop amplitudes, Jhep, 0307, 011, (2003)
[22] Ghilencea, D.M.; Lee, H.M., Higher derivative operators from scherk – schwarz supersymmetry breaking on \(T^2 / \mathbb{Z}_2\)
[23] Ghilencea, D.M., Higher derivative operators as loop counterterms in one-dimensional field theory orbifolds · Zbl 1153.81545
[24] Smilga, A.V., Benign vs. malicious ghosts in higher-derivative theories, Nucl. phys. B, 706, 598-614, (2005) · Zbl 1137.81355
[25] Ivanov, E.A.; Smilga, A.V.; Zupnik, B.M., Renormalizable supersymmetric gauge theory in six dimensions, Nucl. phys. B, 726, 131-148, (2005) · Zbl 1113.81316
[26] Ivanov, E.A.; Smilga, A.V., Conformal properties of hypermultiplet actions in six dimensions · Zbl 1248.81121
[27] Arkani-Hamed, N.; Gregoire, T.; Wacker, J., Higher-dimensional supersymmetry in 4D superspace, Jhep, 0203, 055, (2002)
[28] Hebecker, A., 5D super-yang – mills theory in 4-D superspace, superfield brane operators, and applications to orbifold guts, Nucl. phys. B, 632, 101-113, (2002) · Zbl 0995.81053
[29] Marti, D.; Pomarol, A., Supersymmetric theories with compact extra dimensions in \(N = 1\) superfields, Phys. rev. D, 64, 105025, (2001)
[30] Dudas, E.; Gherghetta, T.; Groot Nibbelink, S., Vector/tensor duality in the five-dimensional supersymmetric green – schwarz mechanism, Phys. rev. D, 70, 086012, (2004)
[31] Buchbinder, I.L., Supergravity loop contributions to brane world supersymmetry breaking, Phys. rev. D, 70, 025008, (2004)
[32] T. Flacke, Covariant quantisation of \(N = 1\), \(D = 5\) supersymmetric Yang-Mills theories in 4D superfield formalism, DESY-THESIS-2003-047
[33] Gates, S.J.; Penati, S.; Tartaglino-Mazzucchelli, G., 6D supersymmetry, projective superspace and 4D, \(N = 1\) superfields
[34] Shifman, M.A.; Vainshtein, A.I., Solution of the anomaly puzzle in SUSY gauge theories and the Wilson operator expansion, Nucl. phys. B, 277, 456, (1986)
[35] Shifman, M.A.; Vainshtein, A.I., On holomorphic dependence and infrared effects in supersymmetric gauge theories, Nucl. phys. B, 359, 571-580, (1991)
[36] Seiberg, N., Naturalness versus supersymmetric nonrenormalization theorems, Phys. lett. B, 318, 469-475, (1993)
[37] Seiberg, N., The power of holomorphy: exact results in 4-D SUSY field theories · Zbl 0907.58076
[38] Weinberg, S., The quantum theory of fields, vol. 3: supersymmetry, (2000), Cambridge Univ. Press Cambridge, 419 p · Zbl 0949.81001
[39] Seiberg, N., Five-dimensional SUSY field theories, non-trivial fixed points and string dynamics, Phys. lett. B, 388, 753-760, (1996)
[40] Morrison, D.R.; Seiberg, N., Extremal transitions and five-dimensional supersymmetric field theories, Nucl. phys. B, 483, 229-247, (1997) · Zbl 0925.81228
[41] Intriligator, K.A.; Morrison, D.R.; Seiberg, N., Five-dimensional supersymmetric gauge theories and degenerations of calabi – yau spaces, Nucl. phys. B, 497, 56-100, (1997) · Zbl 0934.81061
[42] Witten, E., Phase transitions in M-theory and F-theory, Nucl. phys. B, 471, 195-216, (1996) · Zbl 1003.81537
[43] Marcus, N.; Sagnotti, A.; Siegel, W., Ten-dimensional supersymmetric yang – mills theory in terms of four-dimensional superfields, Nucl. phys. B, 224, 159, (1983)
[44] Gates, S.J.; Grisaru, M.T.; Rocek, M.; Siegel, W., Superspace, or one thousand and one lessons in supersymmetry, Frontiers in physics, vol. 58, (1983), Addison-Wesley, 578 p · Zbl 0986.58001
[45] West, P.C., Introduction to supersymmetry and supergravity, (1990), World Scientific Singapore, 425 p · Zbl 0727.53077
[46] Ovrut, B.A.; Wess, J., Supersymmetric \(R(\xi)\) gauge and radiative symmetry breaking, Phys. rev. D, 25, 409, (1982)
[47] Cheng, H.-C.; Matchev, K.T.; Schmaltz, M., Radiative corrections to kaluza – klein masses, Phys. rev. D, 66, 036005, (2002)
[48] Hall, L.J.; Nomura, Y., Gauge coupling unification from unified theories in higher dimensions, Phys. rev. D, 65, 125012, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.