×

zbMATH — the first resource for mathematics

Homotopy of exact coherent structures in plane shear flows. (English) Zbl 1186.76556
Editorial remark: No review copy delivered.

MSC:
76-XX Fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] T. Theodorsen, ”Mechanism of turbulence,” in Proceedings of the Second Midwestern Conference on Fluid Mechanics, Ohio State University, 1982, pp. 1–18.
[2] T. Theodorsen, ”The structure of turbulence,” inFluid Dynamics and Applied Mathematics, edited by J.B. Diaz and S.I. Pai (Gordon and Breach, New York, 1962), pp. 21–27. · Zbl 0142.44201
[3] Malkus, J. Fluid Mech. 1 pp 521– (1956)
[4] Busse, J. Fluid Mech. 41 pp 219– (1970)
[5] A.A. Townsend,Structure of Turbulent Shear Flow(Cambridge University Press, Cambridge, 1956), pp. 315. · Zbl 0070.43002
[6] A.A. Townsend,The Structure of Turbulent Shear Flow, 2nd ed. (Cambridge University Press, Cambridge, 1976). · Zbl 0325.76063
[7] Kline, J. Fluid Mech. 30 pp 741– (1967)
[8] Smith, J. Fluid Mech. 129 pp 27– (1983)
[9] Self-Sustaining Mechanisms of Wall Turbulence, edited by R.L. Panton (Computational Mechanics, Southampton, 1997). · Zbl 1008.76507
[10] P. Holmes, J.L. Lumley, and G. Berkooz,Turbulence, Coherent Structures, Dynamical Systems, and Symmetry(Cambridge University Press, Cambridge, 1996). · Zbl 0890.76001
[11] Acarlar, J. Fluid Mech. 175 pp 1– (1987)
[12] Smith, J. Fluid Mech. 175 pp 43– (1987)
[13] Benney, Stud. Appl. Math. 70 pp 1– (1984) · Zbl 0566.76046 · doi:10.1002/sapm19847011
[14] F. Waleffe, ”Organized motions underlying turbulent shear flows,” Annual Research Briefs-1989, Center for Turbulence Research, Stanford University, 1989, pp. 107–115.
[15] F. Waleffe, J. Kim, and J. Hamilton, ”On the origin of streaks in turbulent shear flows,” inTurbulent Shear Flows 8: Selected Papers from the Eighth International Symposium on Turbulent Shear Flows, Munich, Germany, 9–11 September 1991, edited by F. Durst, R. Friedrich, B.E. Launder, F.W. Schmidt, U. Schumann, and J.H. Whitelaw (Springer, Berlin, 1993), pp. 37-49.
[16] D.D. Stretch, ”Automated pattern eduction from turbulent flow diagnostics,” Annual Research Briefs-1990, Center for Turbulence Research, Stanford University, pp. 145–157.
[17] Kim, J. Fluid Mech. 177 pp 133– (1987)
[18] Jeong, J. Fluid Mech. 332 pp 185– (1997)
[19] Adrian, J. Fluid Mech. 422 pp 1– (2000)
[20] Waleffe, Phys. Rev. Lett. 81 pp 4140– (1998)
[21] Waleffe, J. Fluid Mech. 435 pp 93– (2001)
[22] Hamilton, J. Fluid Mech. 287 pp 317– (1995)
[23] Waleffe, Stud. Appl. Math. 95 pp 319– (1995) · Zbl 0838.76026 · doi:10.1002/sapm1995953319
[24] Waleffe, Phys. Fluids 9 pp 883– (1997)
[25] Joseph, J. Appl. Phys. 30 pp 147– (1963)
[26] Nagata, J. Fluid Mech. 217 pp 519– (1990)
[27] Clever, J. Fluid Mech. 234 pp 511– (1992)
[28] Clever, J. Fluid Mech. 344 pp 137– (1997)
[29] J.D. Murray,Mathematical Biology(Springer, New York, 1993), pp. 767. · Zbl 0779.92001
[30] Greengard, SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 28 pp 1071– (1991)
[31] F. Waleffe and J. Kim, ”How streamwise rolls and streaks self-sustain in a shear flow,” inSelf-Sustaining Mechanisms of Wall Turbulence, edited by R.L. Panton (Computational Mechanics, Southampton, 1997), pp. 385–422.
[32] F. Waleffe and J. Kim, ”How streamwise rolls and streaks self-sustain in a shear flow: Part 2,” AIAA Pap. 98-2997 (1998).
[33] Reddy, J. Fluid Mech. 365 pp 269– (1998)
[34] S. Toh and T. Itano, ”Low-dimensional dynamics embedded in a plane Poiseuille flow turbulence: Traveling-wave solution is a saddle point?” xxx.lanl.gov/abs/physics/9905012 (1999).
[35] Itano, J. Phys. Soc. Jpn. 70 pp 701– (2001)
[36] Tillmark, J. Fluid Mech. 235 pp 89– (1992)
[37] Dauchot, Phys. Fluids 7 pp 335– (1995)
[38] Bottin, Europhys. Lett. 43 pp 171– (1998)
[39] Kawahara, J. Fluid Mech. 449 pp 291– (2001)
[40] Jimenez, J. Fluid Mech. 225 pp 213– (1991)
[41] Schmiegel, Europhys. Lett. 51 pp 395– (2000)
[42] Lundbladh, J. Fluid Mech. 229 pp 499– (1991)
[43] Schmiegel, Phys. Rev. Lett. 79 pp 5250– (1997)
[44] May, Nature (London) 261 pp 459– (1976)
[45] S.H. Strogatz,Nonlinear Dynamics and Chaos(Addison–Wesley, Reading, MA, 1994).
[46] R.L. Devaney,An Introduction to Chaotic Dynamical Systems, 2nd ed. (Addison–Wesley, Redwood City, CA, 1989). · Zbl 0695.58002
[47] Lorenz, J. Atmos. Sci. 20 pp 130– (1963)
[48] Jimenez, J. Fluid Mech. 435 pp 81– (2001)
[49] Eckhardt, Phys. Rev. E 60 pp 509– (1999)
[50] Prigent, Phys. Rev. Lett. 89 pp 014501– (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.