×

Diffuse interface modeling of the morphology and rheology of immiscible polymer blends. (English) Zbl 1186.76273

Editorial remark: No review copy delivered.

MSC:

76-XX Fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] C. L. Tucker and P. Moldenaers, ”Microstructural evolution in polymer blends,” Annu. Rev. Fluid Mech. ARVFA334, 177 (2002).ARVFA30066-4189 · Zbl 1047.76503
[2] G. K. Batchelor, ”The stress system in a suspension of force-free particles,” J. Fluid Mech. JFLSA741, 420 (1970).JFLSA70022-1120
[3] M. Doi and T. Ohta, ”Dynamics and rheology of complex interfaces. I,” J. Chem. Phys. JCPSA695, 1242 (1991).JCPSA60021-9606
[4] D. M. Anderson, G. B. McFadden, and A. A. Wheeler, ”Diffuse-interface methods in fluid mechanics,” Annu. Rev. Fluid Mech. ARVFA330, 139 (1998).ARVFA30066-4189 · Zbl 1398.76051
[5] J. Lowengrub, J. Goodman, H. Lee, E. Longmire, M. J. Shelley, and L. Truskinovsky, in Proceedings of the 1997 International Congress on Free Boundary Problems, edited by I. Athanasopoulos, M. Makrakis, and J. F. Rodrigues (Addison–Wesley–Longman, Reading, MA, 1998), Pitman Research Notes.
[6] E. B. Naumann and D. Q. He, ”Nonlinear diffusion and phase separation,” Chem. Eng. Sci. CESCAC56, 1999 (2001).CESCAC0009-2509
[7] R. Chella and J. Viñals, ”Mixing of a two-phase fluid by cavity flow,” Phys. Rev. E PLEEE853, 3832 (1996).PLEEE81063-651X
[8] D. Jacqmin, in Proceedings of the 34th Aerospace Science Meeting Exhibition, AIAA 96-0858, Reno, 1996.
[9] T. Roths, C. Friedrich, M. Marth, and J. Honerkamp, ”Dynamics and rheology of the morphology of immiscible polymer blends–On modeling and simulation,” Rheol. Acta RHEAAK41, 211 (2002).RHEAAK0035-4511
[10] J. W. Cahn and J. E. Hilliard, ”Free energy of a nonuniform system. I. Interfacial energy,” J. Chem. Phys. JCPSA628, 258 (1958).JCPSA60021-9606
[11] J. W. Cahn and J. E. Hilliard, ”Free energy of a nonuniform system. III,” J. Chem. Phys. JCPSA631, 688 (1959).JCPSA60021-9606
[12] J. W. Cahn, ”Phase separation by spinodal decomposition in isotropic systems,” J. Chem. Phys. JCPSA642, 93 (1964).JCPSA60021-9606
[13] H. T. Davis and L. E. Scriven, ”Stress and structure in fluid interfaces,” Adv. Chem. Phys. ADCPAA49, 357 (1982).ADCPAA0065-2385
[14] J. D. Gunton, M. S. Miguel, and P. S. Sahni, The Dynamics of First-order Phase Transitions, Phase Transitions and Critical Phenomena Vol. 8 (Academic, London, 1983).
[15] D. Jacqmin, in Workshop on Diffuse Interface Models (ENS Lyon, Lyon, 2002).
[16] A. T. Patera, ”A spectral element method for fluid dynamics,” J. Comput. Phys. JCTPAH54, 468 (1984).JCTPAH0021-9991
[17] L. J. P. Timmermans, F. N. van de Vosse, and P. D. Minev, ”Taylor–Galerkin-based spectral element methods for convection-diffusion problems,” Int. J. Numer. Methods Fluids IJNFDW18, 853 (1994).IJNFDW0271-2091 · Zbl 0807.76063
[18] M. Verschueren, P. D. Anderson, and F. N. van de Vosse, ICOSAHOM’98, Herzliya, Israel, 22–26 June 1998.
[19] M. Verschueren, Ph.D. thesis, Eindhoven University of Technology, The Netherlands, 1999.
[20] I. Vinckier, Ph.D. thesis, Katholieke Universiteit Leuven, Belgium, 1996.
[21] T. Jansseune, J. Mewis, P. Moldenaers, M. Minale, and P. L. Maffettone, ”Rheology and rheological morphology determination in immiscible two-phase polymer model blends,” J. Non-Newtonian Fluid Mech. JNFMDI93, 153 (2000).JNFMDI0377-0257 · Zbl 0985.76004
[22] Y. Takahashi, N. Kurashima, I. Noda, and M. Doi, ”Experimental tests of the scaling relation for textured materials in mixtures of two immiscible fluids,” J. Rheol. JORHD238, 699 (1994).JORHD20148-6055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.