zbMATH — the first resource for mathematics

Lattice Boltzmann simulation of open flows with heat transfer. (English) Zbl 1186.76148
Editorial remark: No review copy delivered.

76-XX Fluid mechanics
Full Text: DOI
[1] R. Benzi, S. Succi, and M. Vergassola, ”The lattice Boltzmann equation: Theory and applications,” Phys. Rep. PRPLCM222, 145 (1992).PRPLCM0370-1573
[2] F. J. Higuera, S. Succi, and R. Benzi, ”Lattice gas-dynamics with enhanced collisions,” Europhys. Lett. EULEEJ9, 345 (1989).EULEEJ0295-5075
[3] S. Chen and G. Doolen, ”Lattice Boltzmann method for fluid flows,” Annu. Rev. Fluid Mech. ARVFA3130, 329 (1998).ARVFA30066-4189
[4] S. Succi, I. V. Karlin, and H. Chen, ”Colloquium: Role of the H theorem in lattice Boltzmann hydrodynamic simulations,” Rev. Mod. Phys. RMPHAT74, 1203 (2002).RMPHAT0034-6861
[5] H. Chen, ”H-theorem and generalized semi-detailed balance condition for lattice gas system,” J. Stat. Phys. JSTPBS81, 347 (1995).JSTPBS0022-4715
[6] L. S. Luo, ”Some recent results on discrete velocity models and ramifications for lattice Boltzmann equation,” Comput. Phys. Commun. CPHCBZ129, 263 (2000).CPHCBZ0010-4655
[7] Y. Chen, H. Ohashi, and M. Akiyama, ”Thermal lattice Bhatnagar–Gross–Krook model without non-linear deviations in macrodynamic equations,” Phys. Rev. E PLEEE850, 2776 (1994).PLEEE81063-651X
[8] Y. Chen, H. Ohashi, and M. Akiyama, ”Prandtl number of lattice Bhatnagar–Gross–Krook fluid,” Phys. Fluids PHFLE67, 2280 (1995).PHFLE61070-6631 · Zbl 1025.76544
[9] G. McNamara, A. Garcia, and B. Alder, ”Stabilization of thermal lattice Boltzmann models,” J. Stat. Phys. JSTPBS81, 395 (1995).JSTPBS0022-4715 · Zbl 1106.82353
[10] G. Vahala, P. Pavlo, L. Vahala, and N. Martys, ”Thermal lattice Boltzmann models for compressible flows,” Int. J. Mod. Phys. C IJMPEO9, 1247 (1998).IJMPEO0129-1831
[11] X. He, S. Chen, and G. Doolen, ”A novel thermal model for the lattice Boltzmann method in incompressible limit,” J. Comput. Phys. JCTPAH146, 282 (1998).JCTPAH0021-9991 · Zbl 0919.76068
[12] S. Succi, ”Mesoscopic modeling of slip motion at fluid–solid interfaces with heterogeneous catalysis,” Phys. Rev. Lett. PRLTAO89, 064502 (2002).PRLTAO0031-9007
[13] Q. Zou and X. He, ”On pressure and velocity boundary conditions for the lattice Boltzmann BGK model,” Phys. Fluids PHFLE69, 1591 (1997).PHFLE61070-6631
[14] T. Inamuro, M. Yoshino, and F. Ogino, ”A non-slip boundary condition for lattice Boltzmann simulations,” Phys. Fluids PHFLE67, 2928 (1995).PHFLE61070-6631 · Zbl 1027.76631
[15] X. He, Q. Zou, L. S. Luo, and M. Dembo, ”Analytic solutions and analysis on non-slip boundary condition for the lattice Boltzmann BGK model,” J. Stat. Phys. JSTPBS87, 115 (1997).JSTPBS0022-4715
[16] Y. Zheng, A. L. Garcia, and B. J. Alder, ”Comparison of kinetic theory and hydrodynamics for Poiseuille flow,” J. Stat. Phys. JSTPBS109, 495 (2002).JSTPBS0022-4715 · Zbl 1101.82336
[17] W. M. Kays and M. E. Crawford, Convective Heat and Mass Transfer (McGraw–Hill, Singapore, 1993).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.