×

zbMATH — the first resource for mathematics

On dissolution and reassembly of filamentary reinforcing networks in hyperelastic materials. (English) Zbl 1186.74021
Summary: We generalize a theory for modelling the scission and reforming of cross links in isotropic polymeric materials in order to treat anisotropic mechanical behaviour. Our focus is on materials in which elastic fibres are embedded in an elastic matrix. The fibres may have a different natural stress-free configuration than that of the matrix, e.g. the fibres may be initially crimped in the absence of load. The modelling process allows the fibres to dissolve as deformation proceeds and then to immediately reassemble in the current direction of maximum principal stretch. This results in softening, altered mechanical properties and the possibility of permanent set. We illustrate a rich variety of such mechanical behaviours in the context of uniaxial stretch. The phenomena illustrated have important implications for the influence of mechanical factors in the remodelling of fibrous soft matter including biological tissue.

MSC:
74B20 Nonlinear elasticity
74M99 Special kinds of problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] INT J SOLIDS STRUCT 44 pp 4009– (2007) · Zbl 1178.74041 · doi:10.1016/j.ijsolstr.2006.11.006
[2] Driessen, Biomechanics and modeling in mechanobiology 7 (2) pp 93– (2008) · doi:10.1007/s10237-007-0078-x
[3] INT J SOLIDS STRUCT 44 pp 1949– (2007) · Zbl 1108.74011 · doi:10.1016/j.ijsolstr.2006.08.018
[4] J MECH PHYS SOLIDS 53 pp 1985– (2005) · Zbl 1176.74026 · doi:10.1016/j.jmps.2005.04.004
[5] Humphrey, Journal of biomechanical engineering 121 (6) pp 591– (1999) · doi:10.1115/1.2800858
[6] ARCH MECH 52 pp 443– (2000)
[7] Biophysical Journal 90 (10) pp 3762– (2006) · doi:10.1529/biophysj.105.071506
[8] INT J NONLIN MECH 40 pp 213– (2005) · Zbl 1349.74057 · doi:10.1016/j.ijnonlinmec.2004.05.003
[9] Journal of Elasticity 62 pp 145– (2001) · doi:10.1023/A:1011693326593
[10] PHIL TRANS R SOC B 357 pp 191– (2002) · doi:10.1098/rstb.2001.1033
[11] Journal of Elasticity 49 pp 31– (1997) · Zbl 0953.74011 · doi:10.1023/A:1007441804480
[12] Raeber, Biomechanics and modeling in mechanobiology 7 (3) pp 215– (2008) · doi:10.1007/s10237-007-0090-1
[13] J MECH PHYS SOLIDS 53 pp 2758– (2005) · Zbl 1120.74437 · doi:10.1016/j.jmps.2005.07.004
[14] Journal of Elasticity 62 pp 217– (2001) · Zbl 0996.74013 · doi:10.1023/A:1012964208192
[15] ARCH MECH 42 pp 53– (1990)
[16] INT J NONLIN MECH 42 pp 330– (2007) · doi:10.1016/j.ijnonlinmec.2007.02.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.