×

zbMATH — the first resource for mathematics

Numerical study on transient local entropy generation in pulsating turbulent flow through an externally heated pipe. (English) Zbl 1185.76790
Summary: This study presents an investigation of transient local entropy generation rate in pulsating turbulent flow through an externally heated pipe. The flow inlet to the pipe pulsates at a constant period and amplitude, only the velocity oscillates. The simulations are extended to include different pulsating flow cases (sinusoidal flow, step flow, and saw-down flow) and for varying periods. The flow and temperature fields are computed numerically with the help of the Fluent computational fluid dynamics (CFD) code, and a computer program developed by us by using the results of the calculations performed for the flow and temperature fields. In all investigated cases, the irreversibility due to the heat transfer dominates. With the increase of flow period, the highest levels of the total entropy generation rates increase logarithmically in the case of sinusoidal and saw-down flow cases whereas they are almost constant and the highest total local entropy is also generated in the step case flow. The Merit number oscillates periodically in the pulsating flow cases along the flow time. The results of this study indicate that flow pulsation has an adverse effect on the ratio of the useful energy transfer rate to the irreversibility rate.

MSC:
76F99 Turbulence
76M25 Other numerical methods (fluid mechanics) (MSC2010)
Software:
FLUENT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abbassi H, Magherbi M, Brahim A B 2003 Entropy generation in Poiseuille-Benard channel flow.Int. J. Thermal Sci. 42: 1081–1088 · Zbl 1049.76602 · doi:10.1016/S1290-0729(03)00095-4
[2] Abu-Hijleh B A/K, Abu-Qudais M, Abu Nada E 1999 Numerical prediction of entropy generation due to natural convection from a horizontal cylinder.Energy 24: 327–333 · doi:10.1016/S0360-5442(98)00103-0
[3] Ahn K H, Ibrahim M B 1992 Laminar/turbulent oscillating flow in circular pipes.Int. J. Heat Fluid Flow 13: 340–346 · doi:10.1016/0142-727X(92)90004-S
[4] Al-Zaharnah I T, Yilbas B S, Hashmi M S 2001 Pulsating flow in circular pipes – the analysis of thermal stresses.Int. J. Pressure Vessels Piping 78: 567–579 · doi:10.1016/S0308-0161(01)00068-0
[5] Bejan A 1996aEntropy generation minimization (Boca Raton, FL: CRC Press)
[6] Bejan A 1996b Entropy minimization: the new thermodynamics of finite-size devices and finite-time processes.J. Appl. Phys. 79: 1191–1218 · doi:10.1063/1.362674
[7] Brown D M, Li W, Kakac S 1993 Numerical and experimental analysis of unsteady heat transfer with periodic variation of inlet temperature in circular ducts.Int. Commun. Heat Mass Transfer 20: 883–899 · doi:10.1016/0735-1933(93)90041-S
[8] Calmen M, Minton P 1977 An experimental investigation of flow in an oscillating pipe.J. Fluid Mech. 81:421–431 · doi:10.1017/S0022112077002146
[9] Cho H W, Hyun J M 1990 Numerical solutions of pulsating flow heat transfer characteristics in a pipe.Int. J. Heat Fluid Flow 11: 321–330 · doi:10.1016/0142-727X(90)90056-H
[10] Cotta R M, Ozisik M N 1986 Laminar forced convection inside ducts with periodic variation of inlet temperature.Int. J. Heat Mass Transfer 29: 1495–1501 · Zbl 0603.76085 · doi:10.1016/0017-9310(86)90064-5
[11] Demirel Y, Kahraman R 1999 Entropy generation in a rectangular packed duct with wall heat flux.Int. J. Heat Mass Transfer 42: 2337–2344 · Zbl 0971.76080 · doi:10.1016/S0017-9310(98)00324-X
[12] Faghri M, Javandi K, Faghri A 1979 Heat transfer with laminar pulsating flow in a pipe.Lett. Heat Mass Transfer 6: 259–270 · doi:10.1016/0094-4548(79)90013-4
[13] Fluent 2003 Fluent User’s guide, Version 6.1, Fluent Incorporated
[14] Haddad O M, Alkam M K, Khasawneh M T 2004 Entropy generation due to laminar forced convection in the entrance region of a concentric annulus.Energy 29(1): 35–55 · doi:10.1016/S0360-5442(03)00156-7
[15] Hyder S J, Yilbas B S 2002 Entropy analysis of conjugate heating in a pipe flow.Int. J. Energy Res. 26: 253–262 · doi:10.1002/er.780
[16] Kurzweg U H 1985 Enhanced heat conduction in fluids subjected to sinusoidal oscillations.J. Heat Transfer 107: 459–462 · doi:10.1115/1.3247437
[17] Launder B E, Spalding D B 1972Lectures in mathematical models of turbulence (London: Academic Press) · Zbl 0288.76027
[18] Mahmud S, Fraser R A 2003 The second law analysis in fundamental convective heat transfer problems.Int. J. Thermal Sci. 42: 177–186 · doi:10.1016/S1290-0729(02)00017-0
[19] Mahmud S, Fraser R A 2002 Thermodynamic analysis of flow and heat transfer inside channel with two parallel plates.Exergy, Int. J. 2: 140–146 · doi:10.1016/S1164-0235(02)00062-6
[20] Moschandreou T, Zamir M 1997 Heat transfer in a tube with pulsating flow and constant heat flux.Int. J. Heat Mass Transfer 40: 2461–2466 · Zbl 0939.76529 · doi:10.1016/S0017-9310(96)00266-9
[21] Mukherjee P, Biswas G, Nag P K 1987 Second-law analysis of heat transfer in swirling flow through a cylindrical duct.ASME J. Heat Transfer 109: 308–313 · doi:10.1115/1.3248081
[22] Peattie R A, Budwig R 1989 Heat transfer in laminar, oscillatory flow in cylindrical and conical tubes.Int. J. Heat Mass Transfer 32: 923–934 · doi:10.1016/0017-9310(89)90241-X
[23] Sahin A Z 1998a Second law analysis of laminar viscous flow through a duct subjected to constant wall temperature.ASME J. Heat Transfer 120: 76–83 · doi:10.1115/1.2830068
[24] Sahin A Z 1998b A second law comparison for optimum shape of duct subjected to constant wall temperature and laminar flow.Heat Mass Transfer 33: 425–430 · doi:10.1007/s002310050210
[25] Sahin A Z 1998c Irreversibilities in various duct geometries with constant wall heat flux and laminar flow.Energy 23: 465–473 · doi:10.1016/S0360-5442(98)00010-3
[26] Sahin A Z 1999 Effect of variable viscosity on the entropy generation and pumping power in a laminar fluid flow through a duct subjected to constant heat flux.Heat Mass Transfer 35: 499–506 · doi:10.1007/s002310050354
[27] Sahin A Z 2000 Entropy generation in turbulent liquid flow through a smooth duct subjected to constant wall temperature.Int. J. Heat Mass Transfer 43: 1469–1478 · Zbl 1029.76028 · doi:10.1016/S0017-9310(99)00216-1
[28] Sahin A Z 2002 Entropy generation and pumping power in a turbulent fluid flow through a smooth pipe subjected to constant heat flux.Exergy, Int. J. 2: 314–321 · doi:10.1016/S1164-0235(02)00082-1
[29] Shuja S Z, Yilbas B S 2001 A laminar swirling jet impingement on to an adiabatic wall Effect of inlet velocity profiles.Int. J. Numer. Methods Heat Fluid Flow 11: 237–254 · Zbl 1012.76020 · doi:10.1108/09615530110392104
[30] Shuja S Z, Yilbas B S, Budair M O, Hussaini I S 1999 Entropy analysis of a flow past a heat-generated bluff body.Int. J. Energy Res. 23: 1133–1142 · doi:10.1002/(SICI)1099-114X(19991025)23:13<1133::AID-ER543>3.0.CO;2-9
[31] Shuja S Z, Yilbas B S, Budair M O 2001a Local entropy generation in an impinging jet: minimum entropy concept evaluating various turbulence models.Comput. Methods Appl. Mech. Eng. 190: 3623–3644 · Zbl 1015.76036 · doi:10.1016/S0045-7825(00)00291-7
[32] Shuja S Z, Yilbas B S, Iqbal M O, Budair M O 2001b Flow through a protruding bluff body-heat and irreversibility analysis.Exergy, Int. J. 1: 209–215 · doi:10.1016/S1164-0235(01)00027-9
[33] Shuja S Z, Yilbas B S, Budair M O 2002 Investigation into a confined laminar swirling jet and entropy production.Int. J. Numer. Methods Heat Fluid Flow 12: 870–887 · Zbl 1012.76517 · doi:10.1108/09615530210443070
[34] Shuja S Z, Yilbas B S, Rashid M 2003 Confined swirling jet impingement onto an adiabatic wall,Int. J. Heat Mass Transfer 46: 2947–2955 · Zbl 1045.76522
[35] Valueva E P, Popov V N, Romanova S Y 1993 Heat transfer under laminar pulsating flow in a round tube.Thermal Eng. 40: 624–631
[36] Yapıicıi H, KayataŞ N, Albayrak B, BaŞtürk G 2005 Numerical calculation of local entropy generation in a methane-air burner.Energy Conversion Manage. 46: 1885–1919 · doi:10.1016/j.enconman.2004.09.007
[37] Yaws C L, Lin X Y, Bu L 1994 Calculate viscosities for 355 liquids.Chem. Eng. 101: 119–128
[38] Yilbas B S, Shuja S Z, Budair M O 1999 Second law analysis of a swirling flow in a circular duct with restriction.Int. J. Heat Mass Transfer 42: 4027–4041 · Zbl 0947.76019 · doi:10.1016/S0017-9310(99)00066-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.