zbMATH — the first resource for mathematics

Experimental studies on the shape and path of small air bubbles rising in clean water. (English) Zbl 1185.76401
Editorial remark: No review copy delivered.

76-XX Fluid mechanics
Full Text: DOI
[1] R. Clift, J. R. Grace, and M. E. Weber,Bubbles, Drops and Particles(Academic, New York, 1978).
[2] Magnaudet, Annu. Rev. Fluid Mech. 32 pp 659– (2000)
[3] G. K. Batchelor,An Introduction to Fluid Dynamics(Cambridge University Press, Cambridge, 1967). · Zbl 0152.44402
[4] Duineveld, J. Fluid Mech. 292 pp 325– (1995)
[5] Miyagi, Technol. Rep. Tohoku Univ. 5 pp 135– (1925)
[6] W. L. Haberman and R. K. Morton, ”An experimental investigation of the drag and shape of air bubbles rising in various fluids,” David Taylor Model Basin Report 802, 1953.
[7] Saffman, J. Fluid Mech. 1 pp 249– (1956)
[8] Hartunian, J. Fluid Mech. 3 pp 27– (1957)
[9] Aybers, Waerme- Stoffuebertrag. 2 pp 118– (1969)
[10] Willert, Exp. Fluids 12 pp 353– (1992)
[11] The Culligan water purification system consists of one carbon filter, two 0.45 \(\mu\)m filters, one reverse osmosis system, two deionization columns, one ultraviolet water sterilizer and two 0.22 \(\mu\)m filters. The specific resistance of the water is 10 M\(\Omega\)m.
[12] Ormiéres, Phys. Rev. Lett. 83 pp 80Р(1999)
[13] K. Lunde and R. J. Perkins, ”Observations on wakes behind spheroidal bubbles and particles,” ASME-FED Summer Meeting, Vancouver, Canada, 1997, paper number FEDSM97-3530.
[14] Moore, J. Fluid Mech. 23 pp 749– (1965)
[15] Bel Fdhila, Phys. Fluids 8 pp 310– (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.