zbMATH — the first resource for mathematics

Effect of high rotation rates on the laminar flow around a circular cylinder. (English) Zbl 1185.76357
Editorial remark: No review copy delivered.

76-XX Fluid mechanics
Full Text: DOI
[1] C. F. Lange, ”Numerical predictions of heat and momentum transfer from a cylinder in crossflow with implications to hot-wire anemometry,” Ph.D. thesis, Friedrich-Alexander-Universtät Erlangen-Nürnberg, Erlangen (1997).
[2] C. F. Lange, F. Durst, and M. Breuer, ”Momentum and heat transfer from cylinders in laminar crossflow at 10-4e00,” Int. J. Heat Mass Transf. IJHMAK41, 3409 (1998).IJHMAK0017-9310 · Zbl 0918.76012
[3] C. F. Lange, F. Durst, and M. Breuer, ”Wall effects on heat losses from hot-wires,” Int. J. Heat Fluid Flow IJHFD220, 34 (1999).IJHFD20142-727X
[4] F. Durst, J.-M. Shi, and M. Breuer, ”Numerical prediction of hot-wire corrections near walls,” ASME J. Fluids Eng. JFEGA4124, 241 (2002).JFEGA40098-2202
[5] J. M. Shi, M. Breuer, and F. Durst, ”Wall effect on heat transfer from a micro cylinder in near-wall shear flow,” Int. J. Heat Mass Transf. IJHMAK45, 1309 (2002).IJHMAK0017-9310 · Zbl 1121.76360
[6] I. Proudman and J. R. A. Pearson, ”Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder,” J. Fluid Mech. JFLSA72, 237 (1957).JFLSA70022-1120 · Zbl 0077.39103
[7] B. Fornberg, ”A numerical study of steady viscous flow past a circular cylinder,” J. Fluid Mech. JFLSA798, 819 (1980).JFLSA70022-1120
[8] I. Imai, ”On the asymptotic behavior of viscous fluid flow at a great distance from a cylindrical body with special reference to Filon’s paradox,” Proc. R. Soc. London, Ser. A PRLAAZ208, 487 (1951).PRLAAZ0962-8444
[9] B. Huner and R. G. Hussey, ”Cylinder drag at low Reynolds number,” Phys. Fluids PFLDAS20, 1211 (1977).PFLDAS0031-9171
[10] K. O. L. F. Jayawera and B. J. Mason, ”The behavior of freely falling cylinders and cones in a viscous fluid,” J. Fluid Mech. JFLSA722, 709 (1965).JFLSA70022-1120
[11] C. H. K. Williamson, ”Vortex dynamics in the cylinder wake,” Annu. Rev. Fluid Mech. ARVFA328, 477 (1996).ARVFA30066-4189
[12] C. H. K. Williamson and G. L. Brown, ”A series in 1/Re to represent the Strouhal–Reynolds number relationship of the cylinder wake,” J. Fluids Struct. 12, 1073 (1998).0889-9746
[13] U. Fey, M. König, and H. Eckelmann, ”A new Strouhal–Reynolds number relationship for the circular cylinder in the range 47<Re<205,” Phys. Fluids PHFLE610, 1547 (1998).PHFLE61070-6631
[14] A. B. Wang, Z. Trávniček, and K. C. Chia, ”On the relationship of effective Reynolds number and Strouhal number for the laminar vortex shedding of a heated circular cylinder,” Phys. Fluids PHFLE612, 1401 (2000).PHFLE61070-6631 · Zbl 1149.76579
[15] M. M. Zdravkovich, Flow Around Circular Cylinders, Vol. 1: Fundamentals (Oxford University Press, New York, 1997). · Zbl 0882.76004
[16] G. Magnus, ”On the deflection of a projectile,” Abhandlungen der Akademie der Wissenschaften, Berlin, Germany, 1852;
[17] English translation in Taylor’s Scientific Memoirs (1853).
[18] W. M. Swanson, ”The Magnus effect: A summary of investigation to date,” ASME J. Basic Eng., 461 (1961).
[19] S. Kang, H. Choi, and S. Lee, ”Laminar flow past a rotating circular cylinder,” Phys. Fluids PHFLE611, 3312 (1999).PHFLE61070-6631
[20] H. M. Badr, S. C. R. Dennis, and P. J. S. Young, ”Steady and unsteady flow past a rotating cylinder at low Reynolds numbers,” Comput. Fluids CPFLBI17, 579 (1989).CPFLBI0045-7930 · Zbl 0673.76117
[21] T. Tang and D. B. Ingham, ”On steady flow past a rotating cylinder at Reynolds numbers 60 and 100,” Comput. Fluids CPFLBI19, 217 (1991).CPFLBI0045-7930 · Zbl 0722.76089
[22] D. B. Ingham and T. Tang, ”A numerical investigation into the steady flow past a rotating circular cylinder at low and intermediate Reynolds numbers,” J. Comput. Phys. JCTPAH87, 91 (1990).JCTPAH0021-9991 · Zbl 0687.76037
[23] D. B. Ingham, ”Steady flow past a rotating cylinder,” Comput. Fluids CPFLBI2, 351 (1983).CPFLBI0045-7930 · Zbl 0526.76041
[24] P. Townsend, ”A numerical simulation of Newtonian and visco-elastic flow past stationary and rotating cylinders,” J. Non-Newtonian Fluid Mech. JNFMDI6, 219 (1980).JNFMDI0377-0257 · Zbl 0421.76002
[25] P. L. Ta, ”Étude numérique de l’écoulement d’un fluide visqueux incompressible autour d’un cylindre fixe ou en rotation. effect Magnus,” J. Mec. JOMCAR14, 109 (1975).JOMCAR0021-7832 · Zbl 0307.76015
[26] L. N. G. Filon, ”The forces on a cylinder in a stream of viscous fluid,” Proc. R. Soc. London, Ser. A PRLAAZ113, 7 (1926).PRLAAZ0962-8444 · JFM 52.0867.01
[27] I. Demirdžić and M. Perić, ”Finite volume method for prediction of fluid flow in arbitrary shaped domains with moving boundaries,” Int. J. Numer. Methods Fluids IJNFDW10, 771 (1990).IJNFDW0271-2091 · Zbl 0697.76038
[28] S. V. Patankar and D. B. Spalding, ”A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” Int. J. Heat Mass Transf. IJHMAK15, 1787 (1972).IJHMAK0017-9310 · Zbl 0246.76080
[29] J. H. Ferziger and M. Perić, Computational Methods for Fluid Dynamics (Springer, Berlin, 1996). · Zbl 0869.76003
[30] M. van Dyke, Perturbation Methods in Fluid Mechanics (Parabolic, Stanford, 1975). · Zbl 0329.76002
[31] D. W. Moore, ”The flow past a rapidly rotating circular cylinder in a uniform stream,” J. Fluid Mech. JFLSA72, 541 (1957).JFLSA70022-1120
[32] H. B. Keller and H. Takami, ”Numerical studies of steady viscous flow about cylinders,” in Numerical Solutions of Nonlinear Differential Equations, edited by D. Greenspan (Wiley, New York, 1966), pp. 115–140. · Zbl 0173.18404
[33] H. Takami and H. B. Keller, ”Steady two-dimensional viscous flow of an incompressible fluid past circular cylinders,” Phys. FluidsPFLDAS, Suppl. II 12, 51 (1969).PFLDAS0031-9171 · Zbl 0206.55004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.