×

zbMATH — the first resource for mathematics

Natural doubly diffusive convection in three-dimensional enclosures. (English) Zbl 1185.76049
Editorial remark: No review copy delivered.

MSC:
76-XX Fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. S. Turner, ”Double diffusive phenomena,” Annu. Rev. Fluid Mech. ARVFA36, 37 (1974).ARVFA30066-4189
[2] J. S. Turner, ”Multicomponent convection,” Annu. Rev. Fluid Mech. ARVFA317, 11 (1985).ARVFA30066-4189
[3] R. W. Schmitt, ”Double diffusion in oceanography,” Annu. Rev. Fluid Mech. ARVFA326, 255 (1994).ARVFA30066-4189
[4] W. R. Wilcox, ”Transport phenomena in crystal growth from solution,” Prog. Cryst. Growth Charact. PCGMED26, 153 (1993).V0960-8974
[5] Y. Kamotani, L. W. Wang, S. Ostrach, and H. D. Jiang, ”Experimental study of natural convection in shallow enclosures with horizontal temperature and concentration gradients,” Int. J. Heat Mass Transf. IJHMAK28, 165 (1985).IJHMAK0017-9310
[6] H. D. Jiang, S. Ostrach, and Y. Kamotani, ”Thermosolutal convection with opposed buoyancy forces in shallow enclosures,” Natural Convection in Enclosures-1988, edited by R. S. Figliola and P. G. Simpkins (ASME-HTD, 1988), Vol. 28, p. 165.
[7] H. D. Jiang, S. Ostrach, and Y. Kamotani, ”Unsteady thermosolutal transport phenomena due to opposed buoyancy forces in shallow enclosures,” J. Heat Transfer JHTRAO113, 135 (1991).JHTRAO0022-1481
[8] H. Han and T. H. Kuehn, ”Double diffusive natural convection in a vertical rectangular enclosure–I. Experimental study,” Int. J. Heat Mass Transf. IJHMAK34, 449 (1991).IJHMAK0017-9310
[9] J. Lee, M. T. Hyun, and K. W. Kim, ”Natural convection in confined fluids with combined horizontal temperature and concentration gradients,” Int. J. Heat Mass Transf. IJHMAK31, 1969 (1988).IJHMAK0017-9310
[10] J. A. Weaver and R. Viskanta, ”Natural convection in binary gases due to horizontal thermal and solutal gradients,” J. Heat Transfer JHTRAO113, 141 (1991).JHTRAO0022-1481
[11] J. W. Lee and J. M. Hyun, ”Double-diffusive convection in a rectangle with opposing horizontal temperature and concentration gradients,” Int. J. Heat Mass Transf. IJHMAK33, 1619 (1990).IJHMAK0017-9310
[12] H. Han and T. H. Kuehn, ”Double diffusive natural convection in a vertical rectangular enclosure–II. Numerical study,” Int. J. Heat Mass Transf. IJHMAK34, 461 (1991).IJHMAK0017-9310
[13] D. Gobin and R. Bennacer, ”Cooperating thermosolutal convection in enclosures: Heat transfer and flow structure,” Int. J. Heat Mass Transf. IJHMAK39, 2683 (1996).IJHMAK0017-9310 · Zbl 0964.76543
[14] R. Bennacer and D. Gobin, ”Cooperating thermosolutal convection in enclosures: Scale analysis and mass transfer,” Int. J. Heat Mass Transf. IJHMAK39, 2671 (1996).IJHMAK0017-9310 · Zbl 0964.76543
[15] C. Beghein, F. Haghighat, and F. Allard, ”Numerical study of double diffusive natural convection in a square cavity,” Int. J. Heat Mass Transf. IJHMAK35, 833 (1992).IJHMAK0017-9310
[16] D. Gobin and R. Bennacer, ”Double diffusion in a vertical fluid layer: Onset of the convective regime,” Phys. Fluids PHFLE66, 59 (1994).PHFLE61070-6631 · Zbl 0822.76088
[17] K. Ghorayeb and A. Mojtabi, ”Double diffusive convection in a vertical rectangular cavity,” Phys. Fluids PHFLE69, 2339 (1997).PHFLE61070-6631 · Zbl 0872.76036
[18] S. Xin, P. Le Quéré, and L. S. Tuckerman, ”Bifurcation analysis of double-diffusive convection with opposing horizontal thermal and solutal gradients,” Phys. Fluids PHFLE610, 850 (1998).PHFLE61070-6631
[19] G. Bardan, A. Bergeon, E. Knobloch, and A. Mojtabi, ”Nonlinear doubly diffusive convection in vertical enclosures,” Physica D PDNPDT138, 91 (2000).PDNPDT0167-2789 · Zbl 0945.35072
[20] A. Bergeon, K. Ghorayeb, and A. Mojtabi, ”Double diffusive instability in an inclined cavity,” Phys. Fluids PHFLE611, 549 (1999).PHFLE61070-6631 · Zbl 1147.76324
[21] I. Sezai and A. A. Mohamad, ”Double diffusive convection in a cubic enclosure with opposing temperature and concentration gradients,” Phys. Fluids PHFLE612, 2210 (2000).PHFLE61070-6631 · Zbl 1184.76494
[22] G. Em. Karniadakis, M. Israeli, and S. A. Orszag, ”High-order splitting method for the incompressible Navier–Stokes equations,” J. Comput. Phys. JCTPAH97, 414 (1991).JCTPAH0021-9991 · Zbl 0738.76050
[23] D. Funaro, Polynomial Approximation of Differential Equations (Springer-Verlag, New York, 1991). · Zbl 0728.65092
[24] L. S. Tuckerman, ”Steady-state solving via Stokes preconditioning; Recursion relations for elliptic operators,” in Proceedings of the 11th International Conference on Numerical Methods in Fluid Dynamics, edited by D. L. Dwoyer, M. Y. Hussaini, and R. G. Voigt (Springer-Verlag, Berlin, 1989). · doi:10.1007/3-540-51048-6_95
[25] C. K. Mamun and L. S. Tuckerman, ”Asymmetry and Hopf bifurcation in spherical Couette flow,” Phys. Fluids PHFLE67, 80 (1995).PHFLE61070-6631 · Zbl 0836.76033
[26] A. Bergeon and D. Henry, ”A continuation method applied to the study of three-dimensional Rayleigh–Bénard and Marangoni–Bénard instabilities,” in Continuation Methods in Fluid Dynamics, edited by D. Henry and A. Bergeon, Notes on Numerical Fluid Mechanics 74 (Vieweg, Braunschweig, 2000). · Zbl 0997.76063
[27] R. Seydel, Practical Bifurcation and Stability Analysis: From Equilibrium to Chaos (Springer-Verlag, New York, 1991).
[28] A. Bergeon, D. Henry, H. Ben Hadid, and L. S. Tuckerman, ”Marangoni convection in binary mixtures with Soret effect,” J. Fluid Mech. JFLSA7375, 143 (1998).JFLSA70022-1120 · Zbl 0936.76019
[29] A. Bergeon, D. Henry, and E. Knobloch, ”Three-dimensional Marangoni–Bénard flows in square and nearly square containers,” Phys. Fluids PHFLE613, 92 (2001).PHFLE61070-6631 · Zbl 1184.76050
[30] R. Touihri, H. Ben Hadid, and D. Henry, ”On the onset of convective instabilities in cylindrical cavities heated from below,” Phys. Fluids PHFLE611, 2078 (1999).PHFLE61070-6631 · Zbl 1147.76517
[31] H. D. Jiang, S. Ostrach, and Y. Kamotani, ”Thermosolutal transport phenomena in large Lewis number electrochemical systems,” Int. J. Heat Mass Transf. IJHMAK39, 841 (1996).IJHMAK0017-9310 · Zbl 0963.76580
[32] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, Series on Computational Physics (Springer-Verlag, Heidelberg, 1988). · Zbl 0658.76001 · doi:10.1007/978-3-642-84108-8
[33] H. Wang, R. E. Ewing, G. Qin, S. L. Lyons, M. Al-Lawatia, and S. Man, ”A family of Eulerian–Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations,” J. Comput. Phys. JCTPAH152, 120 (1999).JCTPAH0021-9991 · Zbl 0956.76050
[34] P. Hirschberg and E. Knobloch, ”Mode interactions in large aspect ratio convection,” J. Nonlinear Sci. JNSCEK7, 537 (1997).JNSCEK0938-8794 · Zbl 0902.76035
[35] J. M. Luijkx and J. K. Platten, ”On the onset of free convection in a rectangular channel,” J. Non-Equilib. Thermodyn. JNETDY6, 141 (1981).JNETDY0340-0204 · Zbl 0496.76041
[36] J. D. Crawford and E. Knobloch, ”Symmetry and symmetry-breaking bifurcations in fluid dynamics,” Annu. Rev. Fluid Mech. ARVFA323, 341 (1991).ARVFA30066-4189 · Zbl 0717.76007
[37] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer-Verlag, New York, 1984). · Zbl 0515.34001
[38] O. Batiste, M. Net, I. Mercader, and E. Knobloch, ”Oscillatory binary fluid convection in large aspect-ratio containers,” Phys. Rev. Lett. PRLTAO86, 2309 (2001).PRLTAO0031-9007
[39] O. Batiste, E. Knobloch, I. Mercader, and M. Net, ”Simulations of oscillatory binary fluid convection in large aspect ratio containers,” Phys. Rev. E PLEEE865, 016303 (2001).PLEEE81063-651X
[40] A. M. Rucklidge and P. C. Matthews, ”Analysis of the shearing instability in nonlinear convection and magnetoconvection,” Nonlinearity NONLE59, 311 (1996).NONLE50951-7715 · Zbl 0888.34035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.