×

zbMATH — the first resource for mathematics

Towards a unified theory for morphomechanics. (English) Zbl 1185.74067
Summary: Mechanical forces are closely involved in the construction of an embryo. Experiments have suggested that mechanical feedback plays a role in regulating these forces, but the nature of this feedback is poorly understood. Here, we propose a general principle for the mechanics of morphogenesis, as governed by a pair of evolution equations based on feedback from tissue stress. In one equation, the rate of growth (or contraction) depends on the difference between the current tissue stress and a target (homeostatic) stress. In the other equation, the target stress changes at a rate that depends on the same stress difference. The parameters in these morphomechanical laws are assumed to depend on stress rate. Computational models are used to illustrate how these equations can capture a relatively wide range of behaviours observed in developing embryos, as well as show the limitations of this theory. Specific applications include growth of pressure vessels (e.g. the heart, arteries and brain), wound healing and sea urchin gastrulation. Understanding the fundamental principles of tissue construction can help engineers design new strategies for creating replacement tissues and organs in vitro.

MSC:
74L15 Biomechanical solid mechanics
74A60 Micromechanical theories
92C10 Biomechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahmad, Nature Cell Biology 2 (5) pp 276– (2000) · doi:10.1038/35010544
[2] American Zoologist 20 pp 653– (1980) · doi:10.1093/icb/20.4.653
[3] Alford, Biomechanics and modeling in mechanobiology 7 (4) pp 245– (2008) · doi:10.1007/s10237-007-0101-2
[4] MATH MECH SOLIDS 12 pp 319– (2007)
[5] Baas, Trends in cell biology 11 (6) pp 244– (2001) · doi:10.1016/S0962-8924(01)02005-0
[6] Belintsev, Journal of Theoretical Biology 129 (4) pp 369– (1987) · doi:10.1016/S0022-5193(87)80019-X
[7] 5 pp 1478– (2008)
[8] Beloussov, The International journal of developmental biology 50 (2-3) pp 81– (2006) · doi:10.1387/ijdb.052056lb
[9] Beloussov, International review of cytology 150 pp 1– (1994) · doi:10.1016/S0074-7696(08)61535-1
[10] Beloussov, The International journal of developmental biology 50 (2-3) pp 113– (2006) · doi:10.1387/ijdb.052057lb
[11] Brodland, Journal of biomechanical engineering 116 (2) pp 146– (1994) · doi:10.1115/1.2895713
[12] Carter, Journal of biomechanics 20 (11-12) pp 1095– (1987) · doi:10.1016/0021-9290(87)90027-3
[13] Clausi, Development 118 (3) pp 1013– (1993)
[14] Davidson, Development 121 (7) pp 2005– (1995)
[15] Davidson, Developmental biology 209 (2) pp 221– (1999) · doi:10.1006/dbio.1999.9249
[16] Dennerll, The Journal of Cell Biology 109 (6) pp 3073– (1989) · doi:10.1083/jcb.109.6.3073
[17] Science 300 (5616) pp 145– (2003) · doi:10.1126/science.1079552
[18] Jacinto, Nature Cell Biology 3 (5) pp E117– (2001) · doi:10.1038/35074643
[19] KOBAYAKAWA, The Biological Bulletin 155 (1) pp 150– (1978) · doi:10.2307/1540872
[20] Lamoureux, Nature; Physical Science (London) 340 (6229) pp 159– (1989) · doi:10.1038/340159a0
[21] Lane, Development 117 (3) pp 1049– (1993)
[22] J PHYS IV FRANCE 105 pp 365– (2003) · doi:10.1051/jp4:20030208
[23] Menzel, Biomechanics and modeling in mechanobiology 6 (5) pp 303– (2007) · doi:10.1007/s10237-006-0061-y
[24] The Journal of experimental zoology 82 pp 159– (1939) · doi:10.1002/jez.1400820107
[25] PNAS 12 (3) pp 207– (1926) · doi:10.1073/pnas.12.3.207
[26] Current Science 88 pp 388– (2005)
[27] Nerurkar, Developmental dynamics : an official publication of the American Association of Anatomists 235 (7) pp 1822– (2006) · doi:10.1002/dvdy.20813
[28] Odell, Developmental biology 85 (2) pp 446– (1981) · doi:10.1016/0012-1606(81)90276-1
[29] Evolution 36 pp 444– (1982) · doi:10.2307/2408093
[30] Rachev, Journal of biomechanics 29 (5) pp 635– (1996) · doi:10.1016/0021-9290(95)00108-5
[31] Ramasubramanian, Biomechanics and modeling in mechanobiology 7 (2) pp 77– (2008) · doi:10.1007/s10237-007-0077-y
[32] Rodriguez, Journal of biomechanics 27 (4) pp 455– (1994) · doi:10.1016/0021-9290(94)90021-3
[33] Rodriguez, Journal of biomechanics 40 (5) pp 961– (2007) · doi:10.1016/j.jbiomech.2006.05.002
[34] APPL MECH REV 48 pp 487– (1995) · doi:10.1115/1.3005109
[35] Taber, Journal of biomechanical engineering 120 (3) pp 348– (1998) · doi:10.1115/1.2798001
[36] Taber, Annual review of biomedical engineering 3 (1) pp 1– (2001) · doi:10.1146/annurev.bioeng.3.1.1
[37] Taber, Biomechanics and modeling in mechanobiology 7 (6) pp 427– (2008) · doi:10.1007/s10237-007-0106-x
[38] Toyama, Science 321 (5896) pp 1683– (2008) · doi:10.1126/science.1157052
[39] T  zern, Journal of Theoretical Biology 130 (3) pp 337– (1988) · doi:10.1016/S0022-5193(88)80033-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.