×

zbMATH — the first resource for mathematics

Constitutive modelling of passive myocardium: a structurally based framework for material characterization. (English) Zbl 1185.74060
Summary: In this paper, we first of all review the morphology and structure of the myocardium and discuss the main features of the mechanical response of passive myocardium tissue, which is an orthotropic material. Locally within the architecture of the myocardium three mutually orthogonal directions can be identified, forming planes with distinct material responses. We treat the left ventricular myocardium as a non-homogeneous, thick-walled, nonlinearly elastic and incompressible material and develop a general theoretical framework based on invariants associated with the three directions. Within this framework we review existing constitutive models and then develop a structurally based model that accounts for the muscle fibre direction and the myocyte sheet structure. The model is applied to simple shear and biaxial deformations and a specific form fitted to the existing (and somewhat limited) experimental data, emphasizing the orthotropy and the limitations of biaxial tests. The need for additional data is highlighted. A brief discussion of issues of convexity of the model and related matters concludes the paper.

MSC:
74L15 Biomechanical solid mechanics
92C50 Medical applications (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J APPL MECH 69 pp 570– (2002) · Zbl 1110.74344 · doi:10.1115/1.1485754
[2] Costa, Journal of biomechanical engineering 118 (4) pp 464– (1996) · doi:10.1115/1.2796032
[3] Costa, American Journal of Physiology - Heart and Circulatory Physiology 273 (4) pp H1968– (1997)
[4] PHIL TRANS R SOC LOND A 359 pp 1233– (2001) · Zbl 0994.92013 · doi:10.1098/rsta.2001.0828
[5] Demer, The Journal of Physiology 339 (1) pp 615– (1983) · doi:10.1113/jphysiol.1983.sp014738
[6] Demiray, Journal of biomechanics 5 (3) pp 309– (1972) · doi:10.1016/0021-9290(72)90047-4
[7] J APPL MECH 98 pp 194– (1976)
[8] Dokos, American Journal of Physiology - Heart and Circulatory Physiology 283 (6) pp H2650– (2002) · doi:10.1152/ajpheart.00111.2002
[9] Frank, The Journal of Cell Biology 60 (3) pp 586– (1974) · doi:10.1083/jcb.60.3.586
[10] European Journal of Cardio-Thoracic Surgery 32 (2) pp 231– (2007) · doi:10.1016/j.ejcts.2007.03.032
[11] Guccione, Journal of biomechanical engineering 113 (1) pp 42– (1991) · doi:10.1115/1.2894084
[12] J ELASTICITY 61 pp 1– (2000) · Zbl 1023.74033 · doi:10.1023/A:1010835316564
[13] Holzapfel, Journal of biomechanical engineering 126 (2) pp 264– (2004) · doi:10.1115/1.1695572
[14] Horowitz, Journal of biomechanical engineering 110 (3) pp 200– (1988) · doi:10.1115/1.3108431
[15] Humphrey, Journal of biomechanical engineering 109 (4) pp 298– (1987) · doi:10.1115/1.3138684
[16] Humphrey, Journal of biomechanical engineering 112 (3) pp 333– (1990) · doi:10.1115/1.2891193
[17] Huyghe, Journal of biomechanics 24 (9) pp 841– (1991) · doi:10.1016/0021-9290(91)90309-B
[18] Huyghe, American Journal of Physiology - Heart and Circulatory Physiology 262 (4) pp H1256– (1992)
[19] Kerckhoffs, Annals of biomedical engineering 31 (5) pp 536– (2003) · doi:10.1114/1.1566447
[20] LeGrice, American Journal of Physiology - Heart and Circulatory Physiology 269 (2) pp H571– (1995)
[21] Legrice, American Journal of Physiology - Heart and Circulatory Physiology 272 (5) pp H2466– (1997)
[22] MacKenna, Basic research in cardiology 91 (2) pp 111– (1996) · doi:10.1007/BF00799683
[23] ARCH MECH 54 pp 525– (2002)
[24] INT J SOLIDS STRUCTURES 40 pp 4707– (2003) · Zbl 1054.74721 · doi:10.1016/S0020-7683(03)00309-3
[25] INT J NONLINEAR MECH 41 pp 556– (2006) · Zbl 1160.74318 · doi:10.1016/j.ijnonlinmec.2006.02.001
[26] Journal of biomechanical engineering 27 pp 403– (1994)
[27] Omens, Circulation Research 66 (1) pp 37– (1990) · doi:10.1161/01.RES.66.1.37
[28] Rachev, Journal of biomechanics 30 (8) pp 819– (1997) · doi:10.1016/S0021-9290(97)00032-8
[29] Rodriguez, Journal of biomechanics 27 (4) pp 455– (1994) · doi:10.1016/0021-9290(94)90021-3
[30] Sands, Microscopy research and technique 67 (5) pp 227– (2005) · doi:10.1002/jemt.20200
[31] Schmid, Journal of biomechanical engineering 128 (5) pp 742– (2006) · doi:10.1115/1.2244576
[32] Schmid, Biomechanics and modeling in mechanobiology 7 (3) pp 161– (2008) · doi:10.1007/s10237-007-0083-0
[33] Yin, Circulation Research 49 (4) pp 829– (1981) · doi:10.1161/01.RES.49.4.829
[34] Yin, Journal of biomechanics 20 (6) pp 577– (1987) · doi:10.1016/0021-9290(87)90279-X
[35] Young, Journal of Microscopy (Oxford) 192 (Pt 2) pp 139– (1998) · doi:10.1046/j.1365-2818.1998.00414.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.