zbMATH — the first resource for mathematics

Thermo-poroacoustic acceleration waves in elastic materials with voids. (English) Zbl 1185.74024
The authors propose a model to study acceleration waves in an elastic material with voids taking into account the thermo-dynamical effects. The authors use this model for the investigation of nonlinear phenomena in such materials.

74J30 Nonlinear waves in solid mechanics
74F05 Thermal effects in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76Q05 Hydro- and aero-acoustics
second sound
Full Text: DOI
[1] Casas, P.S.; Quintanilla, R., Exponential decay in one-dimensional porous thermoelasticity, Mech. res. comm., 32, 652-658, (2005) · Zbl 1192.74156
[2] Caviglia, G.; Morro, A.; Straughan, B., Thermoelasticity at cryogenic temperatures, Internat. J. non-linear mech., 27, 251-263, (1992)
[3] Chen, P.J., Growth and decay of waves in solids, (), 303-402
[4] Christov, C.I.; Jordan, P.M., Heat conduction paradox involving second sound propagation in moving media, Phys. rev. lett., 94, (2005), 154301-1-154301-4
[5] Christov, I.; Jordan, P.M.; Christov, C.I., Nonlinear acoustic propagation in homentropic perfect gases: A numerical study, Phys. lett. A, 353, 273-280, (2006)
[6] Ciarletta, M.; Iesan, D., Non-classical elastic solids, (1993), Longman New York · Zbl 0790.73002
[7] M. Ciarletta, G. Iovane, Hypersingular integral equations and applications to porous materials with periodic cracks, in: Proc. XVII Cong. U.M.I., vol. 8-B, 2005, pp. 415-420 · Zbl 1116.45001
[8] Ciarletta, M.; Iovane, G.; Sumbatyan, M.A., On stress analysis for cracks in elastic materials with voids, Internat. J. engrg. sci., 41, 2447-2461, (2003) · Zbl 1211.74186
[9] Ciarletta, M.; Scarpetta, E., Some results in a generalised thermodynamic theory for elastic materials with voids, Rev. roumaine sci. tech. mec. appl., 34, 113-119, (1989) · Zbl 0685.73006
[10] M. Ciarletta, B. Straughan, Poroacoustic acceleration waves, Proc. R. Soc. Lond. Ser. A (2006), in press · Zbl 1149.74345
[11] M. Ciarletta, B. Straughan, Poroacoustic acceleration waves with second sound, 2006, manuscript · Zbl 1149.74345
[12] Coleman, B.D.; Noll, W., The thermodynamics of elastic materials with heat conduction and viscosity, Arch. ration. mech. anal., 13, 167-178, (1963) · Zbl 0113.17802
[13] Diebold, A.C., Subsurface imaging with scanning ultrasound holography, Science, 310, 61-62, (2005), Also see website:
[14] Eremeyev, V.A., Acceleration waves in incompressible elastic media, Dokl. phys., 50, 204-206, (2005)
[15] Fausti, P.; Pompoli, R.; Smith, R.S., An intercomparison of laboratory measurements of airborne sound insulation of lightweight plasterboard walls, Building acoustics, 6, 127-140, (1999)
[16] Fellah, Z.E.A.; Depollier, C., Transient acoustic wave propagation in rigid porous media: A time-domain approach, J. acoust. soc. am., 107, 683-688, (2000) · Zbl 0993.74028
[17] Fellah, Z.E.A.; Depollier, C.; Berger, S.; Lauriks, W.; Trompette, P.; Chapelon, J.Y., Determination of transport parameters in air-saturated porous materials via reflected ultrasonic waves, J. acoust. soc. am., 114, 2561-2569, (2003)
[18] Fu, Y.B.; Scott, N.H., Acceleration wave propagation in an inhomogeneous heat conducting elastic rod of slowly varying cross section, J. thermal stresses, 15, 253-264, (1988)
[19] Fu, Y.B.; Scott, N.H., The transition from acceleration wave to shock wave, Internat. J. engrg. sci., 29, 617-624, (1991) · Zbl 0734.73013
[20] Garai, M.; Pompoli, F., A simple empirical model of polyester fibre materials for acoustical applications, Appl. acoustics, 66, 1383-1398, (2005)
[21] Green, A.E.; Laws, N., On the entropy production inequality, Arch. ration. mech. anal., 45, 47-53, (1972) · Zbl 0246.73006
[22] Gultop, T., On the propagation of acceleration waves in incompressible hyperelastic solids, J. sound vibration, 462, 409-418, (2006)
[23] Iesan, D., Thermoelastic models of continua, (2004), Kluwer · Zbl 1108.74004
[24] Iesan, D., Second-order effects in the torsion of elastic materials with voids, ZAMM Z. angew. math. mech., 85, 351-365, (2005) · Zbl 1080.74011
[25] D. Iesan, Nonlinear plane strain of elastic materials with voids, Math. Mech. Solids (2005), in press, doi:10.1177/1081286505044134
[26] Jordan, P.M., Growth and decay of acoustic acceleration waves in Darcy-type porous media, Proc. R. soc. lond. ser. A, 461, 2749-2766, (2005) · Zbl 1186.76680
[27] Jordan, P.M.; Christov, C.I., A simple finite difference scheme for modelling the finite-time blow-up of acoustic acceleration waves, J. sound vibration, 281, 1207-1216, (2005) · Zbl 1236.76039
[28] Jordan, P.M.; Puri, A., Growth/decay of transverse acceleration waves in nonlinear elastic media, Phys. lett. A, 341, 427-434, (2005) · Zbl 1171.74321
[29] Kameyama, N.; Sugiyama, M., Analysis of acceleration waves in crystalline solids based on a continuum model incorporating microscopic thermal vibration, Contin. mech. thermodyn., 8, 351-359, (1996) · Zbl 0885.73009
[30] Lindsay, K.A.; Straughan, B., Propagation of mechanical and temperature acceleration waves in thermoelastic materials, Z. angew. math. phys., 30, 477-490, (1979) · Zbl 0405.73087
[31] Linton-Johnson, D.; Plona, T.J.; Kajima, H., Probing porous media with first and second sound acoustic properties of water saturated porous media, J. appl. phys., 76, 115-125, (1994)
[32] Magaña, A.; Quintanilla, R., On the time decay of solutions in one-dimensional theories of porous materials, Internat. J. solids structures, 43, 3414-3427, (2006) · Zbl 1121.74361
[33] A. Magaña, R. Quintanilla, On the spatial behaviour of solutions for porous elastic solids with quasi-static microvoids, Math. Comput. Modelling (2006), in press
[34] Mariano, P.M.; Sabatini, L., Homothermal acceleration waves in multifield theories of continua, Internat. J. non-linear mech., 35, 963-977, (2000) · Zbl 1012.74524
[35] W. Maysenhölder, A. Berg, P. Leistner, Acoustic properties of aluminium foams—measurements and modelling, in: CFA/DAGA’04, Strasbourg, 22-25/03/2004. See also: http://www.ibp.fhg.de/ba/forschung/aluschaum/aluschaum.pdf, 2004
[36] Meyer, R.J., Ultrasonic drying of saturated porous solids via second sound, (2006)
[37] Mitra, K.; Kumar, S.; Vedavarz, A.; Moallemi, M.K., Experimental evidence of hyperbolic heat conduction in processed meat, Trans. ASME J. heat transfer, 117, 568-573, (1995)
[38] Nield, D.; Bejan, A., Convection in porous media, (1999), Springer New York · Zbl 0924.76001
[39] Nunziato, J.W.; Walsh, E.K., On the influence of void compaction and material non-uniformity on the propagation of one-dimensional acceleration waves in granular materials, Arch. ration. mech. anal., 64, 299-316, (1977) · Zbl 0366.73028
[40] Nunziato, J.W.; Walsh, E.K., Addendum “on the influence of void compaction and material non-uniformity on the propagation of one-dimensional acceleration waves in granular materials”, Arch. ration. mech. anal., 67, 395-398, (1978) · Zbl 0389.73031
[41] Nunziato, J.W.; Cowin, S.C., A nonlinear theory of elastic materials with voids, Arch. ration. mech. anal., 72, 175-201, (1979) · Zbl 0444.73018
[42] Office of Basic Energy Sciences, Metals and ceramics division, acoustic harmonic generation by microstructures, (2006)
[43] Ostoja-Starzewski, M.; Trebicki, J., On the growth and decay of acceleration waves in random media, Proc. R. soc. lond. ser. A, 455, 2577-2614, (1999) · Zbl 0941.74027
[44] Ouellette, J., Seeing with sound. acoustic microscopy advances beyond failure analysis. American institute of physics website, (2004)
[45] Puri, P.; Jordan, P.M., On the propagation of plane waves in type-III thermoelastic media, Proc. R. soc. lond. ser. A, 460, 3203-3221, (2004) · Zbl 1072.74038
[46] Quintanilla, R., On uniqueness and continuous dependence in the nonlinear theory of mixtures of elastic solids with voids, Math. mech. solids, 6, 281-298, (2001) · Zbl 1028.74014
[47] Quintanilla, R.; Racke, R., A note on stability in dual-phase-lag heat conduction, Int. J. heat mass transfer, 49, 1209-1213, (2006) · Zbl 1189.80025
[48] Quintanilla, R.; Straughan, B., Discontinuity waves in type III thermoelasticity, Proc. R. soc. lond. ser. A, 460, 1169-1175, (2004) · Zbl 1070.74024
[49] Rai, A., Breakdown of acceleration waves in radiative magnetic fluids, Defence sci. J., 53, 425-430, (2003)
[50] Ruggeri, T.; Sugiyama, M., Hyperbolicity, convexity and shock waves in one-dimensional crystalline solids, J. phys. A, 38, 4337-4347, (2005) · Zbl 1070.74025
[51] Sakai, H.; Sato, S.; Pompoli, R.; Prodi, N., Measurement of regional environmental noise by use of a PC-based system: an application to the noise near the airport ‘G marconi’ in Bologna, J. sound vibration, 241, 57-68, (2001)
[52] Su, S.; Dai, W.; Jordan, P.M.; Mickens, R.E., Comparison of the solutions of a phase-lagging heat transport equation and damped wave equation, Int. J. heat mass transfer, 48, 2233-2241, (2005) · Zbl 1189.80029
[53] Sugiyama, M., Statistical mechanical study of wave propagation in crystalline solids at finite temperatures, Current topics in acoustics research, 1, 139-158, (1994)
[54] Vadasz, P., Lack of oscillations in dual-phase-lagging heat conduction for a porous slab subject to imposed heat flux and temperature, Int. J. heat mass transfer, 48, 2822-2828, (2005) · Zbl 1189.76613
[55] Vadasz, J.J.; Govender, S.; Vadasz, P., Heat transfer enhancement in nano-fluids suspensions: possible mechanisms and explanations, Int. J. heat mass transfer, 48, 2673-2683, (2005)
[56] Valenti, G.; Curro, C.; Sugiyama, M., Acceleration waves analysed by a new continuum model of solids incorporating microscopic thermal vibrations, Contin. mech. thermodyn., 16, 185-198, (2004) · Zbl 1107.74317
[57] Wilson, D.K., Simple, relaxational models for the acoustic properties of porous media, Appl. acoustics, 50, 171-188, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.