×

zbMATH — the first resource for mathematics

Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids. (English) Zbl 1185.65150
The paper deals with with an efficient and accurate limiting strategy for multi-dimensional hyperbolic conservation laws on unstructured grids. The multidimensional limiting process (MLP) which has been successfully proposed on structured grids is extended to unstructured grids. The MLP condition can guarantee a higher-order spatial accuracy and improved convergence without yielding spurious oscillations. The reconstruction procedure on unstructured grids imposes an additional difficulty. Interpolation on unstructured grids is not readily derived by difference formula due to random indexing. Following the MUSCL-type framework, reconstruction methods were mainly focused on the calculation of the solution gradient. The authors consider the multi-dimensional hyperbolic conservation law \[ \frac{\partial \mathbf{Q}}{\partial t}+\nabla \cdot \mathbf{F} =0, \] \(\mathbf{Q}\) being the variable state vector and \(\mathbf{F}\) the flux vector. Depending on the location of the physical variables, one may use a cell-centered or a cell-vortex method. Here the first approach is used. In the next section the multi-dimensional limiting process is considered. The last paragraph contains numerical results. The following examples are presented: \[ q_{t}+\mathbf{a}\nabla q=0, \] where \(\mathbf{a}\) is the constant flux velocity, and the rotational flow
\[ q_{t}+ \mathbf{a}\nabla q=0 \qquad \mathbf{a}=(-(y-0.5),(x-0.5)). \]

MSC:
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
76M20 Finite difference methods applied to problems in fluid mechanics
76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
Software:
AUSMPW+
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Vassberg, J.; Tinoco, E.; Mani, M.; Brodersen, O.; Eisfeld, B.; Wahls, R.; Morrison, J.; Zickuhr, T.; Laflin, K.; Mavriplis, D., Abridged summary of the third AIAA computational fluid dynamics drag prediction workshop, J. aircraft, 45, 3, 781-798, (2008)
[2] R.T. Biedron, E.M. Lee-Rausch, Rotor airloads prediction using unstructured meshes and loose CFD/CSD coupling, in: Proceedings of the 26th AIAA Applied Aerodynamic Conference, Honolulu, Hawaii, Paper AIAA 2008-7341, 2008.
[3] V.N. Vatsa, M.D. Sanetrik, E.B. Parlette, Development of a Flexible and Efficient Multigrid-based Multi-block Flow Solver, Paper AIAA 93-0677, 1993.
[4] J.L. Steger, F.C. Dougherty, J.A. Benek, A Chimera Grid Scheme, Advanceds in Grid Gerneration, FED 5, ASME Edited, NY, 1983, pp. 59-69.
[5] Venkatakrishnan, V., Perspective on unstructured grid flow solver, Aiaa j., 34, 3, 533-547, (1996) · Zbl 0896.76002
[6] D.J. Mavriplis, Unstructured mesh discretizations and solvers for computational aerodynamics, in: Proceedings of the 18th AIAA Computational Fluid Dynamics Conference, Miami, FL, Paper AIAA 2007-3955, 2007.
[7] Luo, H.; Baum, J.D.; Löhner, R., High-Reynolds number viscous flow computations using an unstructured-grid method, J. aircraft, 42, 2, 483-492, (2005)
[8] Shi, Jing; Zhang, Yong-Tao; Shu, Chi-Wang, Resolution of high order WENO schemes for complicated flow structures, J. comput. phys., 186, 690-696, (2003) · Zbl 1047.76081
[9] Harten, A., High-resolution schemes for hyperbolic conservation laws, J. comput. phys., 49, 357-393, (1983) · Zbl 0565.65050
[10] Sweby, P.K., High-resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. numer. anal., 21, 5, 995-1011, (1984) · Zbl 0565.65048
[11] Shu, C.W., TVB uniformly high-order schemes for conservation laws, Math. comput., 49, 179, 105-121, (1987) · Zbl 0628.65075
[12] Shu, C.W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. comput. phys., 77, 439-471, (1988) · Zbl 0653.65072
[13] Liu, X.D.; Osher, S.; Chan, T., Weighted essentially non-oscillatory scheme, J. comput. phys., 115, 200-212, (1994) · Zbl 0811.65076
[14] Suresh, A.; Huynh, H.T., Accurate monotonicity-preserving schemes with runge – kutta time stepping, J. comput. phys., 136, 83-99, (1997) · Zbl 0886.65099
[15] Yee, H.C.; Sandham, N.D.; Djomehri, M.J., Low-dissipative high-order shock-capturing methods using characteristic-based filters, J. comput. phys., 150, 199-238, (1999) · Zbl 0936.76060
[16] Garnier, Eric; Sagaut, Pierre; Deville, Michel, A class of explicit ENO filters with application to unsteady flows, J. comput. phys., 170, 184-204, (2001) · Zbl 1011.76056
[17] Goodman, J.B.; LeVeque, R.J., On the accuracy of stable schemes for 2D scalar conservation laws, Math. comput., 45, 15-21, (1985) · Zbl 0592.65058
[18] F. Fezoui, Résolution des équations d’Euler par un schéma de Van Leer en éléments finis, INRIA RR-0358, 1985.
[19] Fezoui, L.; Stoufflet, B., A class of implicit upwind schemes for Euler simulations with unstructured meshes, J. comput. phys., 84, 174-206, (1989) · Zbl 0677.76062
[20] T.J. Barth, D. Jespersen, The design and application of upwind schemes on unstructured meshes, in: Proceedings of the 27th AIAA Aerospace Sciences Meeting, Reno, NV, Paper AIAA 89-0366, 1989.
[21] J.A. Desideri, A. Dervieux, Compressible Flow Solvers Using Unstructured Grids, INRIA RR-1732, 1992.
[22] Jameson, A., Analysis and design of numerical schemes for gas dynamics 1: artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence, Int. J. comp. fluid dyn., 4, 171-218, (1995)
[23] Spekreijse, S.P., Multigrid solution of monotone second order discretizations of hypersonic conservations laws, Math. comput., 49, 135-155, (1987) · Zbl 0654.65066
[24] Venkatakrishnan, V., Convergence to steady state solutions of the Euler equations on unstructured grids with limiters, J. comput. phys., 118, 120-130, (1995) · Zbl 0858.76058
[25] Batten, P.; Lambert, C.; Causon, D.M., Positively conservative high-resolution convection schemes for unstructured elements, Int. J. numer. eng., 39, 1821-1838, (1996) · Zbl 0884.76048
[26] Hubbard, M.E., Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids, J. comput. phys., 155, 54-74, (1999) · Zbl 0934.65109
[27] T.J. Barth, P.O. Frederickson, Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction, in: Proceedings of the 28th AIAA Aerospace Sciences Meeting, Reno, NV, Paper AIAA 90-0013, 1990.
[28] C. Hu, C.W. Shu, Weighted Essentially Non-oscillatory Schemes on Triangular Meshes, ICASE Report 98-32, 1998, pp. 199-224.
[29] Ollivier-Gooch, C.; Altena, M.V., A high-order-accurate unstructured mesh finite-volume scheme for the advection – diffusion equation, J. comput. phys., 181, 729-752, (2002) · Zbl 1178.76251
[30] Cockburn, B.; Shu, C.W., The runge – kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. comput. phys., 141, 199-224, (1998) · Zbl 0920.65059
[31] Wang, Z.J., Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation, J. comput. phys., 178, 210-251, (2002) · Zbl 0997.65115
[32] Wang, Z.J.; Liu, Y.; May, G.; Jameson, A., Spectral difference method for unstructured grids II: extension to the Euler equations, J. sci. comput., 32, 1, 45-70, (2007) · Zbl 1151.76543
[33] Kim, K.H.; Kim, C., Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows part II: multi-dimensional limiting process, J. comput. phys., 208, 570-615, (2005) · Zbl 1329.76265
[34] Yoon, S.-H.; Kim, C.; Kim, K.H., Multi-dimensional limiting process for three-dimensional flow physics analyses, J. comput. phys., 227, 6001-6043, (2008) · Zbl 1388.76218
[35] T.J. Barth, Numerical Methods and Error Estimation for Conservation Laws on Structured and Unstructured Meshes, VKI Computational Fluid Dynamics Lecture Series, 2003.
[36] Frink, N.T., Upwind schemes for solving the Euler equations on unstructured tetrahedral meshes, Aiaa j., 30, 1, 70-77, (1991) · Zbl 0741.76043
[37] D.J. Mavriplis, Revisiting the least-squares procedures for gradient reconstruction on unstructured meshs, in: Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, Orlando, FL, Paper AIAA 2003-3986, 2003.
[38] van Leer, B., Toward the ultimate conservative difference scheme, J. comput. phys., 32, 101-136, (1979) · Zbl 1364.65223
[39] Liu, X.D., A maximum principle satisfying modification of triangle based adaptive stencils for the solution of scalar hyperbolic conservation laws, SIAM J. numer. anal., 39, 703-716, (1993) · Zbl 0791.65068
[40] Roe, P.L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. comput. phys., 43, 357-372, (1981) · Zbl 0474.65066
[41] Kim, S.; Kim, C.; Rho, O.H.; Hong, S.K., Cures for the shock instability: development of a shock-stable roe scheme, J. comput. phys., 185, 342-374, (2003) · Zbl 1062.76538
[42] Kim, K.H.; Kim, C.; Rho, O.H., Methods for the accurate computations of hypersonic flows, part I: AUSMPW+ scheme, J. comput. phys., 174, 38-80, (2001) · Zbl 1106.76421
[43] Shu, C.W., Total-variation-diminishing time discretization, SIAM J. sci. stat. comput., 9, 6, 1073-1084, (1988) · Zbl 0662.65081
[44] Batina, J.T., Implicit upwind solution algorithms for three-dimensional unstructured meshes, Aiaa j., 31, 5, 801-805, (1993) · Zbl 0777.76057
[45] Leveque, R.J., High-resolution conservative algorithms for advection in incompressible flow, SIAM J. numer. anal., 33, 627-665, (1996) · Zbl 0852.76057
[46] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J. comput. phys., 54, 115-173, (1984) · Zbl 0573.76057
[47] AGARD AR-211, Test Cases for Inviscid Flow Field, AGARD, 1985.
[48] J.C. Vassberg, A. Jameson, In pursuit of grid convergence, part I: two-dimensional Euler equations, in: Proceedings of the 27th AIAA Applied Aerodynamics Conference, San Antonio, TX, Paper AIAA 2009-4114, 2009.
[49] Daru, V.; Tenaud, C., Evaluation of TVD high-resolution schemes for unsteady viscous shocked flows, Comput. fluids, 30, 89-113, (2001) · Zbl 0994.76070
[50] Frink, N.T., Tetrahedral unstructured navier – stokes method for turbulent flows, Aiaa j., 36, 11, 1975-1982, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.