×

Monotone Jacobi parameters and non-Szegő weights. (English) Zbl 1185.42027

The relation of the asymptotics of Jacobi parameters to asymptotics of the spectral weights near the edges is investigated. After an introduction into the history of results in this field the authors prove some theorems. The formulation of the theorems together with all notations and assumptions is too voluminous to be presented in a review.

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
39A10 Additive difference equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Carmona, R., One-dimensional Schrödinger operators with random or deterministic potentials: New spectral types, J. Funct. Anal., 51, 229-258 (1983) · Zbl 0516.60069
[2] Chihara, T. S., An Introduction to Orthogonal Polynomials, (Mathematics and Its Applications, vol. 13 (1978), Gordon and Breach: Gordon and Breach New York, London, Paris) · Zbl 0389.33008
[3] Coddington, E. A.; Levinson, N., Theory of Ordinary Differential Equations (1985), Krieger: Krieger Malabar · Zbl 0042.32602
[4] Dombrowski, J.; Nevai, P., Orthogonal polynomials measures and recurrence relations, SIAM J. Math. Anal., 17, 752-759 (1986) · Zbl 0595.42011
[5] Freud, G., Orthogonal Polynomials (1971), Pergamon Press: Pergamon Press Oxford, New York · Zbl 0226.33014
[6] Geronimo, J. S.; Smith, D. T., WKB (Liouville-Green) analysis of second order difference equations and applications, J. Approx. Theory, 69, 269-301 (1992) · Zbl 0764.41030
[7] Geronimo, J. S.; Smith, D. T.; Van Assche, W., Strong asymptotics for orthogonal polynomials with regularly and slowly varying recurrence coefficients, J. Approx. Theory, 72, 141-158 (1993) · Zbl 0772.42012
[8] Golinskii, L.; Nevai, P., Szegő difference equations, transfer matrices and orthogonal polynomials on the unit circle, Comm. Math. Phys., 223, 223-259 (2001) · Zbl 0998.42015
[9] Hinton, D. B.; Shaw, J. K., Absolutely continuous spectra of second order differential operators with short and long range potentials, SIAM J. Math. Anal., 17, 182-196 (1986) · Zbl 0583.34017
[10] Khrushchev, S., A singular Riesz product in the Nevai class and inner functions with the Schur parameters in \(\cap_{p > 2} \ell^p\), J. Approx. Theory, 108, 249-255 (2001) · Zbl 0978.42015
[11] Killip, R.; Simon, B., Sum rules for Jacobi matrices and their applications to spectral theory, Ann. of Math., 158, 2, 253-321 (2003) · Zbl 1050.47025
[12] Kooman, R. J., Asymptotic behaviour of solutions of linear recurrences and sequences of Möbius-transformations, J. Approx. Theory, 93, 1-58 (1998) · Zbl 0933.39015
[13] Krutikov, D.; Remling, C., Schrödinger operators with sparse potentials: Asymptotics of the Fourier transform of the spectral measure, Comm. Math. Phys., 223, 509-532 (2001) · Zbl 1161.81378
[14] Last, Y.; Simon, B., Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators, Invent. Math., 135, 329-367 (1999) · Zbl 0931.34066
[15] Levin, A. L.; Lubinsky, D. S., Christoffel functions and orthogonal polynomials for exponential weights on \([- 1, 1]\), Mem. Amer. Math. Soc., 111, 535 (1994), xiv+146 pp · Zbl 0810.42012
[16] Levin, E.; Lubinsky, D. S., Orthogonal Polynomials for Exponential Weights, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 4 (2001), Springer-Verlag: Springer-Verlag New York · Zbl 0997.42011
[17] Levin, E.; Lubinsky, D. S., On recurrence coefficients for rapidly decreasing exponential weights, J. Approx. Theory, 144, 260-281 (2007) · Zbl 1110.33003
[18] Levitan, B. M.; Sargsjan, I. S., Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators (1975), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0302.47036
[19] Lubinsky, D. S., Jump distributions on \([- 1, 1]\) whose orthogonal polynomials have leading coefficients with given asymptotic behavior, Proc. Amer. Math. Soc., 104, 516-524 (1988) · Zbl 0692.42007
[20] Lubinsky, D. S., Singularly continuous measures in Nevai’s class \(M\), Proc. Amer. Math. Soc., 111, 413-420 (1991)
[21] Magnus, A. P.; VanAssche, W., Sieved orthogonal polynomials and discrete measures with jumps dense in an interval, Proc. Amer. Math. Soc., 106, 163-173 (1989) · Zbl 0681.42016
[22] Marchenko, V. A., Sturm-Liouville Operators and Applications (1986), Birkhäuser: Birkhäuser Basel
[23] Nevai, P., Orthogonal polynomials recurrences, Jacobi matrices, and measures, (Progress in Approximation Theory (Tampa, FL, 1990). Progress in Approximation Theory (Tampa, FL, 1990), Springer Ser. Comput. Math., vol. 19 (1992), Springer: Springer New York), 79-104 · Zbl 0789.42016
[24] Pollaczek, F., Sur une généralisation des polynomes de Legendre, C. R. Acad. Sci. Paris, 228, 1363-1365 (1949) · Zbl 0041.03502
[25] Pollaczek, F., Familles de polynomes orthogonaux, C. R. Acad. Sci. Paris, 230, 36-37 (1950) · Zbl 0033.35903
[26] Pollaczek, F., Sur une généralisation des polynomes de Jacobi, Mémor. Sci. Math., vol. 131 (1956), Gauthier-Villars: Gauthier-Villars Paris
[27] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, III: Scattering Theory (1978), Academic Press: Academic Press New York
[28] Simon, B., Some Jacobi matrices with decaying potential and dense point spectrum, Comm. Math. Phys., 87, 253-258 (1982) · Zbl 0546.35048
[29] Simon, B., Bounded eigenfunctions and absolutely continuous spectra for one-dimensional Schrödinger operators, Proc. Amer. Math. Soc., 124, 3361-3369 (1996) · Zbl 0869.34069
[30] Simon, B., (Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory. Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, AMS Colloquium Series, vol. 54.1 (2005), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 1082.42020
[31] Simon, B., (Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory. Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory, AMS Colloquium Series, vol. 54.2 (2005), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 1082.42021
[32] Simon, B., Orthogonal polynomials with exponentially decaying recursion coefficients, (Dawson, D.; Jaksic, V.; Vainberg, B., Probability and Mathematical Physics. Probability and Mathematical Physics, CRM Proc. and Lecture Notes, vol. 42 (2007)), 453-463 · Zbl 1143.42306
[33] B. Simon, Szegő’s Theorem and Its Descendants: Spectral Theory for \(L^2\); B. Simon, Szegő’s Theorem and Its Descendants: Spectral Theory for \(L^2\) · Zbl 1230.33001
[34] Spigler, R.; Vianello, M., Liouville-Green approximations for a class of linear oscillatory difference equations of the second order, J. Comput. Appl. Math., 41, 105-116 (1992) · Zbl 0749.39001
[35] Spigler, R.; Vianello, M., WKBJ-type approximation for finite moments perturbations of the differential equation \(y ” = 0\) and the analogous difference equation, J. Math. Anal. Appl., 169, 437-452 (1992) · Zbl 0757.34045
[36] Spigler, R.; Vianello, M., Discrete and continuous Liouville-Green-Olver approximations: A unified treatment via Volterra-Stieltjes integral equations, SIAM J. Math. Anal., 25, 720-732 (1994) · Zbl 0791.39006
[37] Szegő, G., Über den asymptotischen Ausdruck von Polynomen, die durch eine Orthogonalitätseigenschaft definiert sind, Math. Ann., 86, 114-139 (1922) · JFM 48.0378.02
[38] Szegő, G., Orthogonal Polynomials, (Amer. Math. Soc. Colloq. Publ., vol. 23 (1939), American Mathematical Society: American Mathematical Society Providence, RI), 4th edition, 1975 · JFM 65.0278.03
[39] Tomčuk, Ju. Ja., Orthogonal polynomials on a given system of arcs on the unit circle, Soviet Math. Dokl., 4, 931-934 (1963), (Russian original in Dokl. Akad. Nauk SSSR 151 (1963) 55-58)
[40] Weidmann, J., Zur Spektraltheorie von Sturm-Liouville-Operatoren, Math. Z., 98, 268-302 (1967) · Zbl 0168.12301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.