×

zbMATH — the first resource for mathematics

A geometric theory for scroll wave filaments in anisotropic excitable media. (English) Zbl 1185.37187
The authors study some models arising in the theory of scroll wave filaments in anisotropic excitable media. The model is presented by a nonlinear reaction-diffusion equation. Firstly, the authors explain the origin of the model and give an interesting overview on the works that have been done previously for the model. The authors provide also several properties of curved spaces. Some numerical simulations are provided to explain the phenomena.

MSC:
37N25 Dynamical systems in biology
35K57 Reaction-diffusion equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Winfree, A., The geometry of biological time, (1980), Springer-Verlag New York, USA · Zbl 0464.92001
[2] Winfree, A., Scroll-shaped waves of chemical activity in three dimensions, Science, 181, 937-939, (1973)
[3] Kapral, R.; Showalter, R., Chemical waves and patterns, (1995), Kluwer Dordrecht
[4] Siegert, F.; Weijer, C., Three dimensional scroll waves organize dictyostelium slugs, Proc. natl. acad. sci. USA, 89, 6433-6437, (1992)
[5] Kaplan, D.; Glass, L., Understanding nonlinear dynamics, (1995), Springer New York · Zbl 0823.34002
[6] Zykov, V., Simulation of wave processes in excitable media, (1987), Manchester University Press Manchester · Zbl 0691.73021
[7] Pertsov, A.; Aliev, R.; Krinsky, V., Three-dimensional twisted vortices in an excitable chemical medium, Nature, 345, 419-421, (1990)
[8] Tyson, J.; Keener, J., Singular perturbation theory of traveling waves in excitable media, Physica D, 32, 327-361, (1988) · Zbl 0656.76018
[9] Pertsov, A., Cardiac electrophysiology: from cell to bedside, (2004), Saunders Philadelphia, pp. 345-354, (Chapter 38)
[10] Gray, R.; Pertsov, A.; Jalife, J., Spatial and temporal organization during cardiac fibrillation, Nature, 392, 75-78, (1998)
[11] Witkowsky, F.; Leon, L.; Penkoske, P.; Giles, W.; Spano, M.; Ditto, W.; Winfree, A., Spatiotemporal evolution of ventricular fibrillation, Nature, 392, 78-82, (1998)
[12] Keener, J., The dynamics of three-dimensional scroll waves in excitable media, Physica D, 31, 269-276, (1988) · Zbl 0645.76052
[13] Biktashev, V.; Holden, A.; Zhang, H., Tension of organizing filaments of scroll waves, Phil. trans. R. soc. lond. A, 347, 611-630, (1994) · Zbl 0862.92002
[14] Hakim, V.; Henry, H., Scroll waves in isotropic excitable media: linear instabilities, bifurcations and restabilized states, Phys. rev. E, 65, 046235, (2002) · Zbl 1244.35071
[15] Margerit, D.; Barkley, D., Cookbook asymptotics for spiral and scroll waves in excitable media, Chaos, 12, 636-649, (2002) · Zbl 1080.35514
[16] Alonso, S.; Panfilov, A., Negative filament tension in the luo-rudy model of cardiac tissue, Chaos, 17, 015102, (2007) · Zbl 1159.37322
[17] Pertsov, A.; Wellner, M.; Vinson, M.; Jalife, J., Topological constraint on scroll wave pinning, Phys. rev. lett., 84, 2738-2741, (2000)
[18] Davidenko, J.; Pertsov, A.; Salomontsz, R.; Baxter, W.; Jalife, J., Stationary and drifting spiral waves of excitation in isolated cardiac muscle, Nature, 355, 349-351, (1991)
[19] Panfilov, A.; Keener, J., Re-entry in three-dimensional myocardium with rotational anisotropy, Physica D, 84, 545-552, (1995) · Zbl 1194.35474
[20] Fenton, F.; Karma, A., Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation, Chaos, 8, 20-47, (1998) · Zbl 1069.92503
[21] Fenton, F.; Cherry, E.; Hastings, H.; Evans, S., Multiple mechanisms of spiral wave breakup in a model of electrical cardiac activity, Chaos, 12, 852-892, (2002)
[22] Berenfeld, O.; Pertsov, A., Dynamics of intramural scroll waves in a 3-dimensional continuous myocardium with rotational anisotropy, J. theoret. biol., 199, 383-394, (1999)
[23] Berenfeld, O.; Wellner, M.; Jalife, J.; Pertsov, A., Shaping of a scroll wave filament by cardiac fibers, Phys. rev. E, 63, 061901, (2001)
[24] Setayeshgar, S.; Bernoff, A., Scroll waves in the presence of slowly varying anisotropy with applications to the heart, Phys. rev. lett., 88, 028101, (2002)
[25] Clerc, L., Directional differences of impulse spread in trabecular muscle from Mammalian heart, J. physiol., 255, 335-346, (1976)
[26] Gilbert, S.; Benson, A.; Li, P.; Holden, A., Regional localisation of left ventricular sheet architecture: integration with current models of cardiac fibre, sheet and band structure, Eur. J. cardio-thoracic surg., 32, 231-249, (2007)
[27] Streeter, D., Gross morphology and fiber geometry of the heart, (), 61-112
[28] Colli-Franzone, P.; Guerri, L.; Pennacchio, M.; Taccardi, B., Spread of excitation in 3d models of the anisotropic cardiac tissue. ii. effects of fiber architecture and ventricular geometry, Math. biosci., 147, 131-171, (1998) · Zbl 0888.92014
[29] Taccardi, B.; Lux, R.; Ershler, P.R.; Watabe, S.; Macchi, E., Normal and abnormal intramural spread of excitation and associated potential distribution, (), 12
[30] Pollard, A.; Burgess, M.; Spitzer, K., Computer simulations of three dimensional propagation in ventricular myocardium: effects of intramural fiber rotation and inhomogeneous conductivity on epicardial activation, Circ. res., 72, 744-756, (1993)
[31] Bernus, O.; Wellner, M.; Pertsov, A., Intramural wave propagation in cardiac tissue: asymptotic solutions and cusp waves, Phys. rev. E, 70, 061913, (2004)
[32] Wellner, M.; Berenfeld, O.; Jalife, J.; Pertsov, A., Minimal principle for rotor filaments, Proc. natl. acad. sci. USA, 99, 8015-8018, (2002)
[33] ten Tusscher, K.; Panfilov, A., Eikonal formulation of the minimal principle for scroll wave filaments, Phys.rev. lett., 93, 108106, (2004)
[34] Anderson, M.; Bonjour, F.; Gregory, R.; Stewart, J., Effective action and motion of a cosmic string, Phys. rev. D, 56, 8014-8028, (1997)
[35] Verschelde, H.; Dierckx, H.; Bernus, O., Covariant stringlike dynamics of scroll wave filaments in anisoptric cardiac tissue, Phys. rev. lett., 99, 168104, (2007)
[36] Misner, C.; Thorne, K.; Wheeler, J., Gravitation, (1973), W.H. Freeman and Co
[37] Manasse, F.; Misner, C., Fermi normal coordinates and some basic concepts in differential geometry, J. math. phys., 4, 735-745, (1963) · Zbl 0118.22903
[38] Bishop, R., There is more than one way to frame a curve, Amer. math. monthly, 82, 251-264, (1975) · Zbl 0298.53001
[39] Keener, J.; Tyson, J., The dynamics of scroll waves in excitable media, SIAM rev., 34, 1-39, (1992) · Zbl 0773.35030
[40] Biktashev, V.; Holden, A., Control of re-entrant activity in a model of Mammalian atrial tissue, Proc. R. soc. lond. B, 260, 211-217, (1995)
[41] Biktasheva, I.; Elkin, Y.; Biktashev, V., Localized sensitivity of spiral waves in the complex Ginzburg-Landau equation, Phys. rev. E, 57, 2656-2659, (1998)
[42] Biktasheva, I.; Biktashev, V., Wave-particle dualism of spiral wave dynamics, Phys. rev. E, 67, 026221, (2003)
[43] H. Verschelde, H. Dierckx, O. Bernus, Work in progress
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.