×

zbMATH — the first resource for mathematics

Ordered groups with a conucleus. (English) Zbl 1185.06012
Authors’ abstract: Our work proposes a new paradigm for the study of various classes of cancellative residuated lattices by viewing these structures as lattice-ordered groups with a suitable operator (a conucleus). One consequence of our approach is the categorical equivalence between the variety of cancellative commutative residuated lattices and the category of abelian lattice-ordered groups endowed with a conucleus whose image generates the underlying group of the lattice-ordered group. In addition, we extend our methods to obtain a categorical equivalence between \(\Pi\)-algebras and product algebras with a conucleus. Among the other results of the paper, we single out the introduction of a categorical framework for making precise the view that some of the most interesting algebras arising in algebraic logic are related to lattice-ordered groups. More specifically, we show that these algebras are subobjects and quotients of lattice-ordered groups in a ‘quantale-like’ category of algebras.

MSC:
06F05 Ordered semigroups and monoids
06D35 MV-algebras
06F15 Ordered groups
06F20 Ordered abelian groups, Riesz groups, ordered linear spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hart, J.; Rafter, L.; Tsinakis, C., The structure of commutative residuated lattices, Michigan math. J., 10, 399-408, (1963)
[2] Blount, K.; Tsinakis, C., The structure of residuated lattices, Internat. J. algebra comput., 13, 4, 437-461, (2003) · Zbl 1048.06010
[3] Bahls, P.; Cole, J.; Galatos, N.; Jipsen, P.; Tsinakis, C., Cancellative residuated lattices, Algebra universalis, 50, 1, 83-106, (2003) · Zbl 1092.06012
[4] Jipsen, P.; Tsinakis, C., A survey of residuated lattices, (), 19-56 · Zbl 1070.06005
[5] Cole, J., Non-distributive cancellative residuated lattices, (), 205-212 · Zbl 1073.06006
[6] Mundici, D., Interpretation of AF C*-algebras in łukasiewicz sentential calculus, J. funct. anal., 65, 1, 15-63, (1986) · Zbl 0597.46059
[7] Dvurečenskij, A., Pseudo MV-algebras are intervals in \(\ell\)-groups, J. aust. math. soc., 72, 3, 427-445, (2002) · Zbl 1027.06014
[8] Galatos, N.; Tsinakis, C., Generalized MV-algebras, J. algebra, 283, 1, 254-291, (2005) · Zbl 1063.06008
[9] Tsinakis, C.; Wille, A.M., Minimal varieties of involutive residuated lattices, Studia logica, 83, 401-417, (2006) · Zbl 1101.06010
[10] Clifford, A.H.; Preston, G.B., The algebraic theory of semigroups, (1961), American Mathematical Society · Zbl 0111.03403
[11] Dubreil, P., Sur LES problèmes d’immersion et la théorie des modules, C. R. acad. sci. Paris, 216, 625-627, (1943) · Zbl 0028.38701
[12] Fuchs, L., Partially ordered algebraic systems, (1963), Pergamon Press Oxford · Zbl 0137.02001
[13] Mac Lane, S., ()
[14] Holland, W.C., The lattice-ordered group of automorphisms of an ordered set, Internat. J. algebra comput., 12, 4, 509-524, (2002)
[15] Gierz, G.; Hofman, K.H.; Keimel, K.; Lawson, J.D.; Mislove, M.; Scott, D.S., A compendium of continuous lattices, (1980), Springer-Verlag Berlin · Zbl 0452.06001
[16] Rosenthal, K.I., ()
[17] Cignoli, R.; D’Ottaviano, I.; Mundici, D., ()
[18] Georgescu, G.; Iorgulescu, A., Pseudo-MV algebras: A noncommutative extension of MV-algebras, (), 961-968 · Zbl 0985.06007
[19] Georgescu, G.; Iorgulescu, A., Pseudo-MV- algebras, Mult.-valued log., 6, 1-2, 95-135, (2001), (G.C. Moisil memorial issue) · Zbl 1014.06008
[20] Barr, M., ()
[21] Hájek, Petr, ()
[22] Hájek, P.; Esteva, F.; Godo, L., A compete many-valued logic with product conjunction, Arch. math. logic, 35, 191-208, (1996) · Zbl 0848.03005
[23] Horčik, R., Standard completeness theorem for \(\Pi\)MTL, Arch. math. logic, 44, 413-424, (2005) · Zbl 1071.03013
[24] Montagna, F.; Noguera, C.; Horčik, R., Weakly cancellative fuzzy logics, J. logic comput., 16, 4, 423-450, (2006) · Zbl 1113.03021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.