×

zbMATH — the first resource for mathematics

The Ginibre ensemble of real random matrices and its scaling limits. (English) Zbl 1184.82004
The purpose of the paper is to derive a closed form for the Pfaffian formulas of the real Ginibre ensemble correlation functions and to evaluate their bulk and edge scaling limits

MSC:
82B05 Classical equilibrium statistical mechanics (general)
15B52 Random matrices (algebraic aspects)
60B20 Random matrices (probabilistic aspects)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Akemann, G.; Kanzieper, E., Integrable structure of ginibre’s ensemble of real random matrices and a Pfaffian integration theorem, J. Stat. Phys., 129, 1159-1231, (2007) · Zbl 1136.82019
[2] Bai, Z.D., Circular law, Ann. Probab., 25, 494-529, (1997) · Zbl 0871.62018
[3] Bleher, P., Mallison, R. Jr.: Zeros of sections of exponential sums. Int. Math. Res. Not., Art. ID 38937, 49, pp. (2006) · Zbl 1110.30005
[4] Borodin, A., Olshanski, G.: Representation theory and random point processes. In: European Congress of Mathematics, Zürich: Eur. Math. Soc., 2005, pp. 73-94 · Zbl 1087.15025
[5] Carpenter, A.J., Varga, R.S., Waldvogel, J.: Asymptotics for the zeros of the partial sums of \(e\)\^{\(z\)}. I. In Proceedings of the U.S.-Western Europe Regional Conference on Padé Approximants and Related Topics (Boulder, CO, 1988), Vol. 21, 1991, pp. 99-120 · Zbl 0734.30008
[6] Chern, S.-J.; Vaaler, J.D., The distribution of values of mahler’s measure, J. Reine Angew. Math., 540, 1-47, (2001) · Zbl 0986.11017
[7] Bruijn, N.G., On some multiple integrals involving determinants, J. Indian Math. Soc. (N.S.), 19, 133-151, (1956) · Zbl 0068.24904
[8] Edelman, A., The probability that a random real Gaussian matrix has \(k\) real eigenvalues, related distributions, and the circular law, J. Multivariate Anal., 60, 203-232, (1997) · Zbl 0886.15024
[9] Edelman, A.; Kostlan, E.; Shub, M., How many eigenvalues of a random matrix are real?, J. Amer. Math. Soc., 7, 247-267, (1994) · Zbl 0790.15017
[10] Everest G., Ward T.: Heights of Polynomials and Entropy in Algebraic Dynamics. Universitext. Springer-Verlag London Ltd., London (1999) · Zbl 0919.11064
[11] Forrester, P.J.; Honner, G., Exact statistical properties of the zeros of complex random polynomials, J. Phys. A, 32, 2961-2981, (1999) · Zbl 0945.60050
[12] Forrester, P.; Nagao, T., Skew orthogonal polynomials and the partly symmetric real Ginibre ensemble, J. Phys. A, 41, 375003, (2008) · Zbl 1185.15032
[13] Forrester, P.J.; Nagao, T., Eigenvalue statistics of the real Ginibre ensemble, Phys. Rev. Lett., 99, 050603, (2007)
[14] Fyodorov, Y.V.; Sommers, H.-J., Random matrices close to Hermitian or unitary: overview of methods and results, J. Phys. A, 36, 3303-3347, (2003) · Zbl 1069.82006
[15] Ginibre, J., Statistical ensembles of complex, quaternion, and real matrices, J. Math. Phys., 6, 440-449, (1965) · Zbl 0127.39304
[16] Girko, V.L., The circular law, Teor. Veroyatnost. i Primenen., 29, 669-679, (1984) · Zbl 0565.60034
[17] Guhr, T.; Mueller-Groeling, A.; Weidenmueller, H.A., Random matrix theories in quantum physics: common concepts, Phys. Rep., 299, 189, (1998)
[18] Kanzieper, E.; Akemann, G., Statistics of real eigenvalues in ginibre’s ensemble of random real matrices, Phys. Rev. Lett., 95, 230201, (2005) · Zbl 1289.70019
[19] Lehmann, N.; Sommers, H.-J., Eigenvalue statistics of random real matrices, Phys. Rev. Lett., 67, 941-944, (1991) · Zbl 0990.82528
[20] Mehta, M.L.: Random Matrices. Third ed., Volume 142 of Pure and Applied Mathematics (Amsterdam). Amsterdam: Elsevier/Academic Press, 2004 · Zbl 0790.05007
[21] Rains, E.M.: Correlation functions for symmetrized increasing subsequences. http://arxiv.org/abs/math/0006097v1[math.Co], 2000 · Zbl 0790.15017
[22] Sinclair, C.D., Averages over ginibre’s ensemble of random real matrices, Int. Math. Res. Not., 2007, 1-15, (2007) · Zbl 1127.15017
[23] Sinclair, C.D., The range of multiplicative functions on \({\mathbb{C}[x], \mathbb{R}[x]}\) and \({\mathbb{Z}[x]}\), Proc. London Math. Soc., 96, 697-737, (2008) · Zbl 1232.11045
[24] Sommers, H.-J., Symplectic structure of the real Ginibre ensemble, J. Phys. A, 40, f671-676, (2007) · Zbl 1117.81095
[25] Sommers, H.-J.; Wieczorek, W., General eigenvalue correlations for the real Ginibre ensemble, J. Phys. A, 41, 40, (2008) · Zbl 1149.82005
[26] Stembridge, J.R., Nonintersecting paths, pfaffians, and plane partitions, Adv. Math., 83, 96-131, (1990) · Zbl 0790.05007
[27] Tao, T.; Vu, V., Random matrices: the circular law, Commun. Cont. Math., 10, 261-307, (2007) · Zbl 1156.15010
[28] Temme, N.M., Uniform asymptotic expansions of the incomplete gamma functions and the incomplete beta function, Math. Comp., 29, 1109-1114, (1975) · Zbl 0313.33002
[29] Tracy, C.A.; Widom, H., Correlation functions, cluster functions, and spacing distributions for random matrices, J. Stat. Phys., 92, 809-835, (1998) · Zbl 0942.60099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.