zbMATH — the first resource for mathematics

Convergence rate for the compressible Navier–Stokes equations with external force. (English) Zbl 1184.35251
Under some smallness conditions, for the compressible time-dependent Navier-Stokes equations with a stationary potential force the authors prove convergence in time to stationary solution. Combining energy methods and spectrum estimates for linearized equations, they obtain an almost optimal convergence rate in \(L^2(\mathbb{R}^N)\)-norm for \(N\geq 3\).

35Q30 Navier-Stokes equations
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
Full Text: DOI
[1] DOI: 10.1007/s002220000078 · Zbl 0958.35100 · doi:10.1007/s002220000078
[2] DOI: 10.1007/s002050100155 · Zbl 1018.76037 · doi:10.1007/s002050100155
[3] DOI: 10.1007/BF02570825 · Zbl 0752.35048 · doi:10.1007/BF02570825
[4] Hoff D., Indiana Univ. Math. J. 44 pp 604–
[5] DOI: 10.1007/s000330050049 · Zbl 0882.76074 · doi:10.1007/s000330050049
[6] DOI: 10.1007/s002200050543 · Zbl 0921.35092 · doi:10.1007/s002200050543
[7] DOI: 10.1007/s002200050418 · Zbl 0912.35122 · doi:10.1007/s002200050418
[8] Matsumura A., J. Math. Kyoto Univ. 20 pp 67–
[9] DOI: 10.1007/BF01214738 · Zbl 0543.76099 · doi:10.1007/BF01214738
[10] Ponce G., Nonlinear Anal. 9 pp 339–
[11] DOI: 10.2969/jmsj/1191419003 · Zbl 1051.76058 · doi:10.2969/jmsj/1191419003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.