On the helicity in 3D-periodic Navier-Stokes equations. II: The statistical case. (English) Zbl 1184.35239

Summary: We study the asymptotic behavior of the statistical solutions to the Navier-Stokes equations using the normalization map [C. Foias and J. C. Saut, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 4, 1–47 (1987; Zbl 0635.35075)]. It is then applied to the study of mean energy, mean dissipation rate of energy, and mean helicity of the spatial periodic flows driven by potential body forces. The statistical distribution of the asymptotic Beltrami flows are also investigated. We connect our mathematical analysis with the empirical theory of decaying turbulence. With appropriate mathematically defined ensemble averages, the Kolmogorov universal features are shown to be transient in time. We provide an estimate for the time interval in which those features may still be present.


35Q30 Navier-Stokes equations
35B10 Periodic solutions to PDEs
35B40 Asymptotic behavior of solutions to PDEs
35C20 Asymptotic expansions of solutions to PDEs
76F02 Fundamentals of turbulence
76M35 Stochastic analysis applied to problems in fluid mechanics


Zbl 0635.35075
Full Text: DOI


[1] Constantin P., Majda A.: The Beltrami spectrum for incompressible fluid flows. Commun. Math. Phys. 115(3), 435–456 (1988) · Zbl 0669.76049
[2] Foias C.: Statistical study of the Navier–Stokes equations I. Rend. Sem. Mat. Univ. Padova 48, 219–348 (1972)
[3] Foias C.: Statistical study of the Navier–Stokes equations II. Rend. Sem. Mat. Univ. Padova 48, 9–123 (1973)
[4] Constantin P., Foias C.: Navier–Stokes equations. University of Chicago Press, Chicago (1988)
[5] Foias C., Hoang L., Nicolaenko B.: On the helicity in 3D–periodic Navier–Stokes equations I: The nonstatistical case. Proc. London Math. Soc. 94(1), 53–90 (2007) · Zbl 1109.76015
[6] Foias C., Hoang L., Olson E., Ziane M.: On the solutions to the normal form of the Navier–Stokes equations. Indiana Univ. Math J 55, 631–686 (2006) · Zbl 1246.76019
[7] Foias, C., Manley, O., Rosa, R., Temam, R.: Navier–Stokes equations and turbulence. In: Encyclopedia of Mathematics and its Applications, Cambridge: Cambridge University Press, 2001, p. 83 · Zbl 0994.35002
[8] Foias C., Saut J.C.: Asymptotic behavior, as t +of solutions of Navier–Stokes equations and nonlinear spectral manifolds. Indiana Univ. Math. J. 33(3), 459–477 (1984) · Zbl 0565.35087
[9] Foias C., Saut J.C.: Linearization and normal form of the Navier–Stokes equations with potential forces. Ann. Inst H. Poincaré, Anal. Non Linéaire 4, 1–47 (1987) · Zbl 0635.35075
[10] Foias C., Saut J.C.: Asymptotic integration of Navier–Stokes equations with potential forces. I. Indiana Univ. Math. J. 40(1), 305–320 (1991) · Zbl 0739.35066
[11] Foias C., Temam R.: Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal. 87(2), 359–369 (1989) · Zbl 0702.35203
[12] Guillope C.: Remarques à propos du comportement lorsque t des solutions des équations de Navier–Stokes associées à une force nulle. Bull. Soc. Math. France 111, 151–180 (1983)
[13] Leray J.: Étude de diverse équations intégrales non linéares et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933) · Zbl 0006.16702
[14] Leray J.: Essai sur les mouvements plans d’un liquide visqueux que limitent des parois. J. Math. Pures Appl 13, 331–418 (1934) · JFM 60.0727.01
[15] Leray J.: Essai sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934) · JFM 60.0726.05
[16] Vishik M.I., Fursikov A.V.: Mathematical Problems of Mathematical Statistical Hydrodynamics. Kluwer Acad. Press, Dordrecht (1980)
[17] Ladyzhenskaya O.A.: Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969) · Zbl 0184.52603
[18] Moffatt H.K.: The degree of knottedness of tangled vortex lines. J. Fluid Mech. 36, 117–129 (1969) · Zbl 0159.57903
[19] Moffatt H.K., Tsinober A.: Helicity in laminar and turbulent flow. Ann. Rev. Fluid Mech. 24, 281–312 (1992) · Zbl 0751.76018
[20] Ponce G., Racke R., Sideris T.C., Titi E.S.: Global stability of large solutions to the 3D Navier–Stokes Equations. Commun. Math. Phys. 159, 329–341 (1994) · Zbl 0795.35082
[21] Shtilman L., Pelz R.B., Tsinober A.: Numerical investigation of helicity in turbulence flow. Computers and Fluids 16(3), 341–347 (1988)
[22] Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. AMS Chelsea Publishing, Providence, RI: Amer. Math. soc., 2001 · Zbl 0981.35001
[23] Varadhan S.R.S.: Stochastic Processes. Courant Institute of Mathematical Sciences, New York (1968)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.