Mitake, Hiroyoshi Large time behavior of solutions of Hamilton-Jacobi equations with periodic boundary data. (English) Zbl 1184.35061 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 11, 5392-5405 (2009). The author investigates the large time behavior of viscosity solutions of the Cauchy-Dirichlet problem with periodic boundary data for Hamilton-Jacobi equations \[ \begin{aligned} u_t(x, t)+ H(x, Du(x,t))= 0\quad &\text{in }\Omega\times(0,\infty),\\ u(x, t)= g(x, t)\quad &\text{on }\partial\Omega\times(0,\infty),\\ u(x, 0)= f(x)\quad &\text{in }\Omega,\end{aligned} \] where \(\Omega\) is a bounded domain of \(\mathbb{R}^N\), \(H= H(x, p)\) is a real-valued function (Hamiltonian) on \(\overline\Omega\times\mathbb{R}^N\) which is coercive and convex in the variable \(p,u: \overline\Omega\times [0,\infty)\to\mathbb{R}\) is the unknown function, \(f:\overline\Omega\to\mathbb{R}\) is a given function, \(g: \partial\Omega\times (0,\infty)\to\mathbb{R}\) is a given function which is assumed to be asymptotically periodic with respect to the \(t\) variable. More precisely, the author deals with the time-dependent Dirichlet boundary condition given by \(g\in C(\partial\Omega\times [0,\infty))\) which satisfies \[ g(x,t)- g_1(x,t)\to 0\text{ uniformly on }\partial\Omega\text{ as }t\to\infty \] for some time-periodic function \(g_1\in C(\partial\Omega\times\mathbb{R})\) with period \(T> 0\). Representations for a state constraint asymptotic solution and a periodic asymptotic solution are given. Reviewer: Vasile Iftode (Bucureşti) Cited in 8 Documents MSC: 35B40 Asymptotic behavior of solutions to PDEs 35B10 Periodic solutions to PDEs 35F25 Initial value problems for nonlinear first-order PDEs 35F30 Boundary value problems for nonlinear first-order PDEs Keywords:large-time behavior; Hamilton-Jacobi equations; Cauchy-Dirichlet problem; periodic solution; Aubry set PDF BibTeX XML Cite \textit{H. Mitake}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 11, 5392--5405 (2009; Zbl 1184.35061) Full Text: DOI References: [1] Namah, G.; Roquejoffre, J.-M., Remarks on the long time behaviour of the solutions of hamilton – jacobi equations, Comm. partial differential equations, 24, 5-6, 883-893, (1999) · Zbl 0924.35028 [2] Fathi, A., Sur la convergence du semi-groupe de Lax-Oleinik, C. R. acad. sci. Paris Sér. I math., 327, 3, 267-270, (1998) · Zbl 1052.37514 [3] Barles, G.; Souganidis, P.E., On the large time behavior of solutions of hamilton – jacobi equations, SIAM J. math. anal., 31, 4, 925-939, (2000) · Zbl 0960.70015 [4] Roquejoffre, J.-M., Convergence to steady states or periodic solutions in a class of hamilton – jacobi equations, J. math. pures appl. (9), 80, 1, 85-104, (2001) · Zbl 0979.35033 [5] Davini, A.; Siconolfi, A., A generalized dynamical approach to the large time behavior of solutions of hamilton – jacobi equations, SIAM J. math. anal., 38, 2, 478-502, (2006) · Zbl 1109.49034 [6] Fujita, Y.; Ishii, H.; Loreti, P., Asymptotic solutions of hamilton – jacobi equations in Euclidean \(n\) space, Indiana univ. math. J., 55, 5, 1671-1700, (2006) · Zbl 1112.35041 [7] Barles, G.; Roquejoffre, J.-M., Ergodic type problems and large time behaviour of unbounded solutions of hamilton – jacobi equations, Comm. partial differential equations, 31, 7-9, 1209-1225, (2006) · Zbl 1107.35019 [8] Ishii, H., Asymptotic solutions for large time of hamilton – jacobi equations in Euclidean \(n\) space, Ann. inst. H. Poincaré anal. non linéaire, 25, 2, 231-266, (2008) · Zbl 1145.35035 [9] Ichihara, N.; Ishii, H., Asymptotic solutions of hamilton – jacobi equations with semi-periodic Hamiltonians, Comm. partial differential equations, 33, 4-6, 784-807, (2008) · Zbl 1145.35034 [10] Ichihara, N.; Ishii, H., The large-time behavior of solutions of hamilton – jacobi equations on the real line, Methods appl. anal., 15, 2, 223-242, (2008) · Zbl 1170.35339 [11] N. Ichihara, H. Ishii, Long-time behavior of solutions of Hamilton-Jacobi equations with convex and coercive Hamiltonians, Arch. Ration. Mech. Anal. (in press) · Zbl 1243.70017 [12] Bernard, P.; Roquejoffre, J.-M., Convergence to time-periodic solutions in time-periodic hamilton – jacobi equations on the circle, Comm. partial differential equations, 29, 3-4, 457-469, (2004) · Zbl 1072.35055 [13] Bostan, M.; Namah, G., Time periodic viscosity solutions of hamilton – jacobi equations, Commun. pure appl. anal., 6, 2, 389-410, (2007) · Zbl 1131.35301 [14] Barles, G., Asymptotic behavior of viscosity solutions of first Hamilton Jacobi equations, Ricerche mat., 34, 2, 227-260, (1985) · Zbl 0637.49014 [15] Mitake, H., The large-time behavior of solutions of the cauchy – dirichlet problem for hamilton – jacobi equations, Nonlinear differential equations appl., 15, 3, 347-362, (2008) · Zbl 1171.35332 [16] Mitake, H., Asymptotic solutions of hamilton – jacobi equations with state constraints, Appl. math. optim., 58, 3, 393-410, (2008) · Zbl 1178.35137 [17] Soner, H.M., Optimal control with state-space constraint, I, SIAM J. control optim., 24, 3, 552-561, (1986) · Zbl 0597.49023 [18] Ishii, H., A boundary value problem of the Dirichlet type for hamilton – jacobi equations, Ann. scuola norm. sup. Pisa cl. sci. (4), 16, 1, 105-135, (1989) · Zbl 0701.35052 [19] Barles, G.; Perthame, B., Discontinuous solutions of deterministic optimal stopping time problems, RAIRO model. math. anal. numer., 21, 4, 557-579, (1987) · Zbl 0629.49017 [20] Lions, P.-L., () [21] Bardi, M.; Capuzzo-Dolcetta, I., Optimal control and viscosity solutions of hamilton – jacobi – bellman equations, () · Zbl 0890.49011 [22] Ishii, H.; Mitake, H., Representation formulas for solutions of hamilton – jacobi equations with convex Hamiltonians, Indiana univ. math. J., 56, 5, 2159-2184, (2007) · Zbl 1136.35016 [23] Fathi, A.; Siconolfi, A., PDE aspects of aubry – mather theory for quasiconvex Hamiltonians, Calc. var. partial differential equations, 22, 2, 185-228, (2005) · Zbl 1065.35092 [24] H. Ishii, H. Mitake, Two remarks of periodic solutions of Hamilton-Jacobi equations. Preprint · Zbl 1184.35017 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.