×

zbMATH — the first resource for mathematics

Thermal performance of flat-shaped heat pipes using nanofluids. (English) Zbl 1183.80057
Summary: Analytical models are utilized to investigate the thermal performance of rectangular and disk-shaped heat pipes using nanofluids. The liquid pressure, liquid velocity profile, temperature distribution of the heat pipe wall, temperature gradient along the heat pipe, thermal resistance and maximum heat load are obtained for the flat-shaped heat pipes utilizing a nanofluid as the working fluid. The flat-shaped heat pipe’s thermal performance using a nanofluid is substantially enhanced compared with one using a regular fluid. The nanoparticles presence within the working fluid results in a decrease in the thermal resistance and an increase in the maximum heat load capacity of the flat-shaped heat pipe. The existence of an optimum nanoparticle concentration level and wick thickness in maximizing the heat removal capability of the flat-shaped heat pipe was established.

MSC:
80A20 Heat and mass transfer, heat flow (MSC2010)
80A22 Stefan problems, phase changes, etc.
76S05 Flows in porous media; filtration; seepage
82D80 Statistical mechanics of nanostructures and nanoparticles
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Faghri, A.: Heat pipe science and technology, (1995)
[2] Vafai, K.; Wang, W.: Analysis of flow and heat transfer characteristics of an asymmetrical flat- plate heat pipe, Int. J. Heat mass transfer 35, 2087-2099 (1991)
[3] Zhu, N.; Vafai, K.: Analytical modeling of the startup characteristics of asymmetrical flat-plate and disk-shaped heat pipes, Int. J. Heat mass transfer 41, 2619-2637 (1998) · Zbl 0962.76630
[4] Vafai, K.; Zhu, N.; Wang, W.: Analysis of asymmetric disk-shaped and flat- plate heat pipes, J. heat transfer 117, 209-218 (1995)
[5] Wang, Y.; Vafai, K.: An experimental investigation of the transient characteristics on a flat-plate heat pipe during startup and shutdown operations, ASME J. Heat transfer 122, 525-535 (2000)
[6] Wang, Y.; Vafai, K.: An experimental investigation of the thermal performance of an asymmetrical flat plate heat pipe, Int. J. Heat mass transfer 43, 2657-2668 (2000)
[7] Zhu, N.; Vafai, K.: Analysis of cylindrical heat pipes incorporating the effects of liquid – vapor coupling and non-darcian transport – a closed form solution, Int. J. Heat mass transfer 42, 3405-3418 (1999) · Zbl 0969.76091
[8] Shafahi, M.; Bianco, V.; Vafai, K.; Manca, O.: An investigation of the thermal performance of cylindrical heat pipes using nanofluids, Int. J. Heat mass transfer 53, 376-383 (2010) · Zbl 1180.80043
[9] Naphon, P.; Thongkum, D.; Assadamongkol, P.: Heat pipe efficiency enhancement with refrigerant – nanoparticles mixtures, Energy convers. Manage. 50, 772-776 (2009)
[10] Yang, X. F.; Liu, Z. H.; Zhao, J.: Heat transfer performance of a horizontal micro-grooved heat pipe using cuo nanofluid, J. micromechan. Microeng. 18, 035038 (2008)
[11] Ma, H. B.; Wilson, C.; Yu, Q.; Park, K.; Choi, U. S.; Tirumala, M.: An experimental investigation of heat transport capability in a nanofluid oscillating heat pipe, J. heat transfer 128, 1213-1216 (2006)
[12] Naphon, P.; Assadamongkol, P.; Borirak, T.: Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency, Int. commun. Heat mass transfer 35, 1316-1319 (2008)
[13] Shima, P. D.; Philip, J.; Raj, B.: Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids, Appl. phys. Lett. 94, 223101 (2009)
[14] Xuan, Y.; Huang, Y.; Qiang, L.: Experimental investigation on thermal conductivity and specific heat capacity of magnetic microencapsulated phase change material suspension, Chem. phys. Lett. 479, 264-269 (2009)
[15] Evans, W.; Fish, J.; Keblinski, P.: Role of Brownian motion hydrodynamics on nanofluid thermal conductivity, Appl. phys. Lett. 88, 093116 (2006)
[16] Anoop, K. B.; Sundararajan, T.; Das, S. K.: Effect of particle size on the convective heat transfer in nanofluid in the developing region, Int. J. Heat mass transfer 52, 2189-2195 (2009) · Zbl 1158.80302
[17] Jung, J.; Yoo, J. Y.: Thermal conductivity enhancement of nanofluids in conjunction with electrical double layer (EDL), Int. J. Heat mass transfer 52, 525-528 (2009)
[18] Beck, M.; Yuan, Y.; Warrier, P.; Teja, A. S.: The effect of particle size on the thermal conductivity of alumina nanofluids, J. nanoparticle res. 11, 1129-1136 (2009)
[19] Fang, K.; Weng, C.; Ju, S.: An investigation into the structural features and thermal conductivity of silicon nanoparticles using molecular dynamics simulations, Nanotechnology 17, 3909-3914 (2006)
[20] Kang, S. W.; Wei, W. C.; Tsai, S. H.; Yang, S. Y.: Experimental investigation of silver nano-fluid on heat pipe thermal performance, Appl. therm. Eng. 26, 2377-2382 (2006)
[21] Kang, S. W.; Wei, W. C.; Tsai, S. H.; Huang, C. C.: Experimental investigation of nanofluids on sintered heat pipe thermal performance, Appl. therm. Eng. 29, 973-979 (2009)
[22] Y. Chen, W. Wei, S. Kang, C. Yu, Effect of nanofluid on flat heat pipe thermal performance, in: 24th IEEE SEMI-THERM Symposium, 16 – 19, March 16 – 20, 2008.
[23] Lin, Y.; Kang, S.; Chen, H.: Effect of silver nano-fluid on pulsating heat pipe thermal performance, Appl. therm. Eng. 28, 1312-1317 (2008)
[24] Liu, Z.; Xiong, J.; Bao, R.: Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface, Int. J. Multiphase flow 33, 1284-1295 (2007)
[25] Ma, H. B.; Wilson, C.; Borgmeyer, B.; Park, K.; Yu, Q.; Choi, S. U. S.; Tirumala, M.: Effect of nanofluid on the heat transport capability in an oscillating heat pipe, Appl. phys. Lett. 88, 143116 (2006)
[26] R. R. Riehl, Analysis of loop heat pipe behavior using nanofluid, in: Heat Powered Cycles International Conference (HPC), New Castle, UK, paper 06102, September 11 – 14, 2006.
[27] Tsaia, C. Y.; Chiena, H. T.; Dingb, P. P.; Chanc, B.; Luhd, T. Y.; Chena, P. H.: Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance, Mater. lett. 58, 1461-1465 (2004)
[28] Brinkman, H. C.: The viscosity of concentrated suspensions and solution, J. chem. Phys. 0, 571-581 (1952)
[29] Pak, B. C.; Cho, Y. I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. heat transfer 11, 151-170 (1998)
[30] Chi, S. W.: Heat pipe theory and practice, (1976)
[31] Yu, W.; Choi, S. U. S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. nanoparticle res. 5, 167-171 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.