×

zbMATH — the first resource for mathematics

Electromechanics of the heart: a unified approach to the strongly coupled excitation-contraction problem. (English) Zbl 1183.78031
Summary: This manuscript is concerned with a novel, unified finite element approach to fully coupled cardiac electromechanics. The intrinsic coupling arises from both the excitation-induced contraction of cardiac cells and the deformation-induced generation of current due to the opening of ion channels. In contrast to the existing numerical approaches suggested in the literature, which devise staggered algorithms through distinct numerical methods for the respective electrical and mechanical problems, we propose a fully implicit, entirely finite element-based modular approach. To this end, the governing differential equations that are coupled through constitutive equations are recast into the corresponding weak forms through the conventional isoparametric Galerkin method. The resultant nonlinear weighted residual terms are then consistently linearized. The system of coupled algebraic equations obtained through discretization is solved monolithically. The put-forward modular algorithmic setting leads to an unconditionally stable and geometrically flexible framework that lays a firm foundation for the extension of constitutive equations towards more complex ionic models of cardiac electrophysiology and the strain energy functions of cardiac mechanics. The performance of the proposed approach is demonstrated through three-dimensional illustrative initial boundary-value problems that include a coupled electromechanical analysis of a biventricular generic heart model.

MSC:
78A70 Biological applications of optics and electromagnetic theory
92C10 Biomechanics
74L15 Biomechanical solid mechanics
74F15 Electromagnetic effects in solid mechanics
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aliev RR, Panfilov AV (1996) A simple two-variable model of cardiac excitation. Chaos, Solitons Fractals 7: 293–301 · doi:10.1016/0960-0779(95)00089-5
[2] Beeler GW, Reuter H (1977) Reconstruction of the action potential of ventricular myocardial fibres. J Physiol 268: 177–210
[3] Bers DM (2002) Cardiac excitationcontraction coupling. Nature 415: 198–205 · doi:10.1038/415198a
[4] Clayton RH, Panfilov AV (2008) A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Progr Biophys Mol Biol 96: 19–43 · doi:10.1016/j.pbiomolbio.2007.07.004
[5] Fenton F, Karma A (1998) Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation. Chaos Interdiscipl J Nonlinear Sci 8: 20–27 · Zbl 1069.92503 · doi:10.1063/1.166311
[6] Fenton FH, Cherry EM, Hastings HM, Evans SJ (2002) Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. Chaos Interdiscipl J Nonlinear Sci 12: 852–892 · doi:10.1063/1.1504242
[7] Fitzhugh R (1961) Impulses and physiological states in theoretical models of nerve induction. Biophys J 1: 455–466 · doi:10.1016/S0006-3495(61)86902-6
[8] Göktepe S, Kuhl E (2009) Computational modeling of cardiac electrophysiology: A novel finite element approach. Int J Numer Methods Eng 79: 156–178 · Zbl 1171.92310 · doi:10.1002/nme.2571
[9] Göktepe S, Wong J, Kuhl E (2009) Atrial and ventricular fibrillation–computational simulation of spiral waves in cardiac tissue. Arch Appl Mech. doi: 10.1007/s00419-009-0384-0
[10] Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to excitation and conduction in nerve. J Physiol 117: 500–544
[11] Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Phil Trans Ser A, Math Phys Eng Sci 367(1902):3445–3475. PMID: 19657007 · Zbl 1185.74060 · doi:10.1098/rsta.2009.0091
[12] Keener JP, Sneyd J (1998) Mathematical physiology. Springer, New York · Zbl 0913.92009
[13] Keldermann R, Nash M, Panfilov A (2007) Pacemakers in a reaction–diffusion mechanics system. J Stat Phys 128: 375–392 · Zbl 1115.92004 · doi:10.1007/s10955-006-9219-3
[14] Kerckhoffs R, Healy S, Usyk T, McCulloch A (2006) Computational methods for cardiac electromechanics. Proc IEEE 94: 769–783 · doi:10.1109/JPROC.2006.871772
[15] Klabunde RE (2005) Cardiovascular physiology concepts. Lippincott Williams & Wilkins, Philadelphia
[16] Kohl P, Hunter P, Noble D (1999) Stretch-induced changes in heart rate and rhythm: Clinical observations, experiments and mathematical models. Progr Biophys Mol Biol 71: 91–138 · doi:10.1016/S0079-6107(98)00038-8
[17] Kotikanyadanam M, Göktepe S, Kuhl E (2009) Computational modeling of electrocardiograms: a finite element approach towards cardiac excitation. Commun Numer Methods Eng. doi: 10.1002/cnm.1273 · Zbl 1187.92062
[18] Luo CH, Rudy Y (1991) A model of the ventricular cardiac action potential. depolarization, repolarization, and their interaction. Circ Res 68: 1501–1526
[19] Malmivuo J, Plonsey R (1995) Bioelectromagnetism. Oxford University Press, Oxford
[20] Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50: 2061–2070 · doi:10.1109/JRPROC.1962.288235
[21] Nash MP, Hunter PJ (2000) Computational mechanics of the heart from tissue structure to ventricular function. J Elast 61: 113–141 · Zbl 1071.74659 · doi:10.1023/A:1011084330767
[22] Nash MP, Panfilov AV (2004) Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Progr Biophys Mol Biol 85: 501–522 · doi:10.1016/j.pbiomolbio.2004.01.016
[23] Nickerson D, Nash M, Nielsen P, Smith N, Hunter P (2006) Computational multiscale modeling in the IUPS physiome project: modeling cardiac electromechanics. IBM J Res Dev 50: 617–630 · Zbl 05420530 · doi:10.1147/rd.506.0617
[24] Nickerson D, Smith N, Hunter P (2005) New developments in a strongly coupled cardiac electromechanical model. Europace 7: S118–127 · doi:10.1016/j.eupc.2005.04.009
[25] Niederer SA, Smith NP (2008) An improved numerical method for strong coupling of excitation and contraction models in the heart. Progr Biophys Mol Biol 96: 90–111 · doi:10.1016/j.pbiomolbio.2007.08.001
[26] Nielsen PM, Grice IJL, Smaill BH, Hunter PJ (1991) Mathematical model of geometry and fibrous structure of the heart. Am J Physiol 260: H1365–1378
[27] Noble D (1962) A modification of the Hodgkin–Huxley equations applicable to purkinje fibre action and pacemaker potentials. J Physiol 160: 317–352
[28] Opie LH (2004) Heart physiology: from cell to circulation. Lippincott Williams & Wilkins, Philadelphia
[29] Panfilov AV, Keldermann RH, Nash MP (2005) Self-organized pacemakers in a coupled reaction-diffusion-mechanics system. Phys Rev Lett 95:258,104–1–258,014–4. PMID: 16384515 · doi:10.1103/PhysRevLett.95.258104
[30] Panfilov AV, Keldermann RH, Nash MP (2007) Drift and breakup of spiral waves in reaction diffusion mechanics systems. Proc Natl Acad Sci 104: 7922–7926 · doi:10.1073/pnas.0701895104
[31] Plank G, Burton RA, Hales P, Bishop M, Mansoori T, Bernabeu MO, Garny A, Prassl AJ, Bollensdorff C, Mason F, Mahmood F, Rodriguez B, Grau V, Schneider JE, Gavaghan D, Kohl P (2009) Generation of histo-anatomically representative models of the individual heart: tools and application. Phil Trans R Soc A 367: 2257–2292 · Zbl 1185.92064 · doi:10.1098/rsta.2009.0056
[32] Pope AJ, Sands GB, Smaill BH, LeGrice IJ (2008) Three-dimensional transmural organization of perimysial collagen in the heart. Am J Physiol Heart Circ Physiol 295(3): H1243–1252 · doi:10.1152/ajpheart.00484.2008
[33] Pullan AJ, Buist ML, Cheng LK (2005) Mathematical modeling the electrical activity of the heart. World Scientific, Singapore
[34] Rogers JM (2002) Wave front fragmentation due to ventricular geometry in a model of the rabbit heart. Chaos (Woodbury, N.Y.) 12:779–787. PMID: 12779606 · doi:10.1063/1.1483956
[35] Rogers JM, McCulloch AD (1994) Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation. J Cardiovasc Electrophysiol 5: 496–509 · doi:10.1111/j.1540-8167.1994.tb01290.x
[36] Rohmer D, Sitek A, Gullberg GT (2007) Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance imaging (DTMRI) data. Invest Radiol 42: 777–789 · doi:10.1097/RLI.0b013e3181238330
[37] Sachse FB (2004) Computational cardiology: modeling of Anatomy, electrophysiology, and mechanics. Springer, Berlin · Zbl 1051.92025
[38] Sainte-Marie J, Chapelle D, Cimrman R, Sorine M (2006) Modeling and estimation of the cardiac electromechanical activity. Comput Struct 84: 1743–1759 · doi:10.1016/j.compstruc.2006.05.003
[39] Sermesant M, Rhode K, Sanchez-Ortiz G, Camara O, Andriantsimiavona R, Hegde S, Rueckert D, Lambiase P, Bucknall C, Rosenthal E, Delingette H, Hill D, Ayache N, Razavi R (2005) Simulation of cardiac pathologies using an electromechanical biventricular model and XMR interventional imaging. Med Image Anal 9: 467–480 · doi:10.1016/j.media.2005.05.003
[40] Spencer AJM (1971) Theory of invariants. In: Eringen A (eds). Continuum Physics, vol 1. Academic Press, New York
[41] Tusscher KHWJT, Panfilov AV (2008) Modelling of the ventricular conduction system. Progr Biophys Mol Biol 96: 152–170 · doi:10.1016/j.pbiomolbio.2007.07.026
[42] Usyk TP, LeGrice IJ, McCulloch AD (2002) Computational model of three-dimensional cardiac electromechanics. Comput Vis Sci 4: 249–257 · Zbl 1001.92005 · doi:10.1007/s00791-002-0081-9
[43] Yin FC, Chan CC, Judd RM (1996) Compressibility of perfused passive myocardium. Am J Physiol Heart Circ Physiol 271(5): H1864–1870
[44] Zheng Z, Croft J, Giles W, Mensah G (2001) Sudden cardiac death in the United States. Circulation 104: 2158–2163 · doi:10.1161/hc4301.098254
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.